Approximate maximum likelihood estimation for diffusion processes from discrete observations

1995 ◽  
Vol 52 (1-2) ◽  
pp. 1-13 ◽  
Author(s):  
M. N. Mishra ◽  
J. P. N. Bishwal
2020 ◽  
pp. 2150018
Author(s):  
Zhifen Chen ◽  
Xiaopeng Chen

In this paper, we consider the maximum likelihood estimation for the symmetric [Formula: see text]-stable Ornstein–Uhlenbeck (S[Formula: see text]S-OU) processes based on discrete observations. Since the closed-form expression of maximum likelihood function is hard to obtain in the Lévy case, we choose a mixture of Cauchy and Gaussian distribution to approximate the probability density function (PDF) of the S[Formula: see text]S distribution. By means of transition function and Laplace transform, we construct an explicit approximate sequence of likelihood function, which converges to the likelihood function of S[Formula: see text]S distribution. Based on the approximation of likelihood function we give an algorithm for computing maximum likelihood estimation. We also numerically simulate some experiments which demonstrate the accuracy and stability of the proposed estimator.


Sign in / Sign up

Export Citation Format

Share Document