Periodised Carbohydrate Intake Does Not Affect Substrate Oxidation but May Contribute to Endurance Capacity

Author(s):  
Meri M. Salokannel ◽  
Oona-Mari Hakulinen ◽  
Juha P. Ahtiainen
2010 ◽  
Vol 109 (1) ◽  
pp. 126-134 ◽  
Author(s):  
Gregory R. Cox ◽  
Sally A. Clark ◽  
Amanda J. Cox ◽  
Shona L. Halson ◽  
Mark Hargreaves ◽  
...  

We determined the effects of varying daily carbohydrate intake by providing or withholding carbohydrate during daily training on endurance performance, whole body rates of substrate oxidation, and selected mitochondrial enzymes. Sixteen endurance-trained cyclists or triathletes were pair matched and randomly allocated to either a high-carbohydrate group (High group; n = 8) or an energy-matched low-carbohydrate group (Low group; n = 8) for 28 days. Immediately before study commencement and during the final 5 days, subjects undertook a 5-day test block in which they completed an exercise trial consisting of a 100 min of steady-state cycling (100SS) followed by a 7-kJ/kg time trial on two occasions separated by 72 h. In a counterbalanced design, subjects consumed either water (water trial) or a 10% glucose solution (glucose trial) throughout the exercise trial. A muscle biopsy was taken from the vastus lateralis muscle on day 1 of the first test block, and rates of substrate oxidation were determined throughout 100SS. Training induced a marked increase in maximal citrate synthase activity after the intervention in the High group (27 vs. 34 μmol·g−1·min−1, P < 0.001). Tracer-derived estimates of exogenous glucose oxidation during 100SS in the glucose trial increased from 54.6 to 63.6 g ( P < 0.01) in the High group with no change in the Low group. Cycling performance improved by ∼6% after training. We conclude that altering total daily carbohydrate intake by providing or withholding carbohydrate during daily training in trained athletes results in differences in selected metabolic adaptations to exercise, including the oxidation of exogenous carbohydrate. However, these metabolic changes do not alter the training-induced magnitude of increase in exercise performance.


2014 ◽  
Vol 68 (9) ◽  
pp. 1060-1066 ◽  
Author(s):  
J Kahlhöfer ◽  
M Lagerpusch ◽  
J Enderle ◽  
B Eggeling ◽  
W Braun ◽  
...  

1993 ◽  
Vol 3 (2) ◽  
pp. 150-164 ◽  
Author(s):  
Joanne L. Fallowfield ◽  
Clyde Williams

The influence of increased carbohydrate intake on endurance capacity was investigated following a bout of prolonged exercise and 22.5 hrs of recovery. Sixteen male subjects were divided into two matched groups, which were then randomly assigned to either a control (C) or a carbohydrate (CHO) condition. Both groups ran at 70% VO2max on a level treadmill for 90 min or until volitional fatigue, whichever came first (T1), and 22.5 hours later they ran at the same % VO2max for as long as possible to assess endurance capacity (T2). During the recovery, the carbohydrate intake of the CHO group was increased from 5.8 (±0.5) to 8.8 (±0.1) g kg-1BW. This was achieved by supplementing their normal diet with a 16.5% glucose-polymer solution. An isocaloric diet was prescribed for the C group, in which additional energy was provided in the form of fat and protein. Run times over T1 did not differ between the groups. However, over T2 the run time of the C group was reduced by 15.57 min (p<0.05), whereas those in the CHO group were able to match their T1 performance. Blood glucose remained stable throughout Tl and T2 in both groups. In contrast, blood lactate, plasma FFA, glycerol, ammonia, and urea increased. Thus, a high carbohydrate diet restored endurance capacity within 22.5 hrs whereas an isocaloric diet without additional carbohydrate did not.


Author(s):  
Ezzatollah Keyhani ◽  
Larry F. Lemanski ◽  
Sharon L. Lemanski

Energy for sperm motility is provided by both glycolytic and respiratory pathways. Mitochondria are involved in the latter pathway and conserve energy of substrate oxidation by coupling to phosphorylation. During spermatogenesis, the mitochondria undergo extensive transformation which in many species leads to the formation of a nebemkem. The nebemkem subsequently forms into a helix around the axial filament complex in the middle piece of spermatozoa.Immature spermatozoa of axolotls contain numerous small spherical mitochondria which are randomly distributed throughout the cytoplasm (Fig. 1). As maturation progresses, the mitochondria appear to migrate to the middle piece region where they become tightly packed to form a crystalline-like sheath. The cytoplasm in this region is no longer abundant (Fig. 2) and the plasma membrane is now closely apposed to the outside of the mitochondrial layer.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1368-P
Author(s):  
EMILY ROSENBERG ◽  
KAITLYN JAMES ◽  
JULIANA ARENAS ◽  
MICHAEL J. CALLAHAN ◽  
MELODY CAYFORD ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 229-LB
Author(s):  
NICHOLAS T. BROSKEY ◽  
TERRY E. JONES ◽  
ZHEN YANG ◽  
NKAUJYI KHANG ◽  
DONGHAI ZHENG ◽  
...  

2018 ◽  
Author(s):  
Asim Maity ◽  
Sung-Min Hyun ◽  
Alan Wortman ◽  
David Powers

<p>Hypervalent iodine(V) reagents, such as Dess-Martin periodinane (DMP) and 2-iodoxybenzoic acid (IBX), are broadly useful oxidants in chemical synthesis. Development of strategies to access these reagents from O2 would immediately enable use of O2 as a terminal oxidant in a broad array of substrate oxidation reactions. Recently we disclosed the aerobic synthesis of I(III) reagents by intercepting reactive oxidants generated during aldehyde autoxidation. Here, we couple aerobic oxidation of iodobenzenes with disproportionation of the initially generated I(III) compounds to generate I(V) reagents. The aerobically generated I(V) reagents exhibit substrate oxidation chemistry analogous to that of DMP. Further, the developed aerobic generation of I(V) has enabled the first application of I(V) intermediates in aerobic oxidation catalysis.</p>


Sign in / Sign up

Export Citation Format

Share Document