Effect of surface roughness on the static characteristics of inclined plane slider bearing: Rabinowitsch fluid model

2017 ◽  
Vol 11 (3) ◽  
pp. 125-135 ◽  
Author(s):  
A. Siddangouda ◽  
N. B. Naduvinamani ◽  
S. S. Siddapur
Author(s):  
Ahcene Mouassa ◽  
Mustapha Lahmar ◽  
Benyebka Bou-Said

The combined effects of surface roughness and lubricant rheology on the performance characteristics of a hydrodynamic inclined slider bearing are investigated by means of the homogenized method. The pad surface is rough and stationary while the lower surface is assumed to be smooth and moving. The V. K. Stokes couple stress fluid model is adopted to describe the rheological behavior of the lubricant flowing between the two surfaces. The numerical simulations are performed by considering three roughness patterns (transverse, longitudinal and anisotropic), and various values of the couple stress parameter. It is found that the homogenization method is rigorous and efficient for the three roughness patterns considered. It is also found that the combined effects of the surface roughness as well as the couple stress due to the presence of polymer additives on the hydrodynamic performance characteristics such as load carrying capacity, friction factor are significant.


1976 ◽  
Vol 98 (1) ◽  
pp. 117-124 ◽  
Author(s):  
L. S. H. Chow ◽  
H. S. Cheng

The Christensen theory of stochastic models [7] for hydrodynamic lubrication of rough surfaces is extended to elastohydrodynamic lubrication between two rollers. The Grubin-type equation including asperity effects in the inlet region is derived. Solutions for the reduced pressure at the entrance as a function of the ratio of the average nominal film thickness to the r.m.s. surface roughness (in terms of standard deviation σ), have been obtained numerically. Results were obtained for purely transverse as well as purely longitudinal surface roughness for cases with or without slip. The reduced pressure is shown to decrease slightly by considering longitudinal surface roughness. The transverse surface roughness, on the other hand, has a slight beneficial effect on the average film thickess at the inlet. The same approach was used to study the effect of surface roughness on lubrication between rigid rollers and lubrication of an infinitely-wide slider bearing. Results of these two cases show that the effects of surface roughness are similar to those found in elastohydrodynamic contacts.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Dhanapal P. Basti

The combined effects of couple stresses and surface roughness patterns on the squeeze film characteristics of curved annular plates are studied. The Stokes (1966) couple stress fluid model is included to account for the couple stresses arising due to the presence of microstructure additives in the lubricant. In the context of Christensen's (1969) stochastic theory for the lubrication of rough surfaces, two types of one-dimensional roughness patterns (circumferential and radial) are considered. The governing modified stochastic Reynolds type equations are derived for these roughness patterns. Expressions for the mean squeeze film characteristics are obtained. Numerical computations of the results show that the circumferential roughness pattern on the curved annular plate results in more pressure buildup whereas performance of the squeeze film suffers due to the radial roughness pattern for both concave and convex pads. Further the squeeze film time is longer (shorter) for the circumferential (radial) roughness patterns. Improved squeeze film characteristics are predicted for the couple stress lubricant.


Shinku ◽  
1987 ◽  
Vol 30 (10) ◽  
pp. 793-798 ◽  
Author(s):  
Masao HIRASAKA ◽  
Masao HASHIBA ◽  
Toshiroh YAMASHINA

Sign in / Sign up

Export Citation Format

Share Document