effect of surface
Recently Published Documents





2022 ◽  
Vol 74 ◽  
pp. 465-473
Gongda Zhang ◽  
Qi Zhu ◽  
Hongbing Yang ◽  
Can Yang ◽  
Yayun Liu ◽  

2022 ◽  
Lihui Ou

Abstract A deeper mechanistic understanding on CH3OH oxidation on Pt-Ru alloys with different Ru surface compositions is provided by DFT-based theoretical studies in this paper. The present results show that alloying and surface compositions of Ru can change CH3OH oxidation pathway and activity. The optimal surface composition of Ru is speculated to be ca. 50% since the higher Ru surface composition can lead to formation of carbonaceous species that can poison surface. Our present calculated Ru surface composition of ca. 50% exhibits excellent consistency with experimental studies. The origin of enhanced catalytic activity of Pt-Ru alloys is determined. The significantly decreased surface work functions after alloying suggest more electrons are transferred into adsorbates. The calculated lower electrode potentials after alloying imply that lower overpotentials are required for CH3OH oxidation. The excellent inconsistency with experimental study on decreased onset potentials after alloying further confirms accuracy of our present calculated results.

2022 ◽  
Vol 20 (1) ◽  
Peng Zhang ◽  
Daoyuan Chen ◽  
Lin Li ◽  
Kaoxiang Sun

AbstractSurface charge of biological and medical nanocarriers has been demonstrated to play an important role in cellular uptake. Owing to the unique physicochemical properties, charge-reversal delivery strategy has rapidly developed as a promising approach for drug delivery application, especially for cancer treatment. Charge-reversal nanocarriers are neutral/negatively charged at physiological conditions while could be triggered to positively charged by specific stimuli (i.e., pH, redox, ROS, enzyme, light or temperature) to achieve the prolonged blood circulation and enhanced tumor cellular uptake, thus to potentiate the antitumor effects of delivered therapeutic agents. In this review, we comprehensively summarized the recent advances of charge-reversal nanocarriers, including: (i) the effect of surface charge on cellular uptake; (ii) charge-conversion mechanisms responding to several specific stimuli; (iii) relation between the chemical structure and charge reversal activity; and (iv) polymeric materials that are commonly applied in the charge-reversal delivery systems. Graphical Abstract

2022 ◽  
Vol 3 (1) ◽  
pp. 19-34
Susan Alkurdi ◽  
Raed Al-Juboori ◽  
Jochen Bundschuh ◽  
Alla Marchuk

The reuse of waste materials for water treatment purposes is an important approach for promoting the circular economy and achieving effective environmental remediation. This study examined the use of bone char/titanium dioxide nanoparticles (BC/nTiO2) composite and UV for As(III) and As(V) removal from water. The composite was produced via two ways: addition of nTiO2 to bone char during and after pyrolysis. In comparison to the uncoated bone char pyrolyzed at 900 °C (BC900), nTiO2 deposition onto bone char led to a decrease in the specific surface area and pore volume from 69 to 38 m2/g and 0.23 to 0.16 cm3/g, respectively. However, the pore size slightly increased from 14 to 17 nm upon the addition of nTiO2. The composite prepared during pyrolysis (BC/nTiO2)P had better As removal than that prepared after pyrolysis with the aid of ultrasound (BC/nTiO2)US (57.3% vs. 24.8%). The composite (BC/nTiO2)P had higher arsenate oxidation than (BC/nTiO2)US by about 3.5 times. Arsenite oxidation and consequent adsorption with UV power of 4, 8 and 12 W was examined and benchmarked against the composite with visible light and BC alone. The highest UV power was found to be the most effective treatment with adsorption capacity of 281 µg/g followed by BC alone (196 µg/g). This suggests that the effect of surface area and pore volume loss due to nTiO2 deposition can only be compensated by applying a high level of UV power.

Ingrid Milosev ◽  
Peter Rodic

Abstract The study aimed to investigate the effect of surface pretreatment on the corrosion protection of aluminum alloy 7075-T6 in sodium chloride solution using cerium acetate as a corrosion inhibitor. Different surface pretreatments were tested: (i) mechanical grinding, (ii) mechanical grinding and non-water diamond polishing, (iii) mechanical grinding, alkaline etching with NaOH and acid desmutting, and (iv) mechanical grinding, alkaline cleaning with a commercial SurTec cleaner and acid desmutting. Topography, composition, and morphology of inhibited surface during immersion were investigated using optical microscopy, 3-D profilometry, scanning electron microscopy/energy-dispersive X-ray analysis and Fourier transform infrared spectrometry. The corrosion properties were determined by potentiodynamic measurements and electrochemical impedance spectroscopy in sodium chloride solution without and with the addition of cerium acetate. A change in the composition and morphology of the inhibited surface was noticed as a function of surface pretreatment and immersion time. Appropriate surface treatment resulted in improved protection against localized corrosion even after long-term immersion up to 1 month. Among mechanical pretreatments, polishing gave better results than grinding. Among chemical pretreatments, alkaline cleaning in SurTec/HNO3 was more appropriate as a preceding step to acid desmutting than alkaline etching with NaOH.

Sign in / Sign up

Export Citation Format

Share Document