Human gait recognition using firefly template segmentation

Author(s):  
Sankara Rao Palla ◽  
Gupteswar Sahu ◽  
Priyadarsan Parida
Keyword(s):  
2010 ◽  
Vol 20 (1) ◽  
pp. 120-128 ◽  
Author(s):  
Md. Zia Uddin ◽  
Tae-Seong Kim ◽  
Jeong Tai Kim

Smart homes that are capable of home healthcare and e-Health services are receiving much attention due to their potential for better care of the elderly and disabled in an indoor environment. Recently the Center for Sustainable Healthy Buildings at Kyung Hee University has developed a novel indoor human activity recognition methodology based on depth imaging of a user’s activities. This system utilizes Independent Component Analysis to extract spatiotemporal features from a series of depth silhouettes of various activities. To recognise the activities from the spatiotemporal features, trained Hidden Markov Models of the activities would be used. In this study, this technique has been extended to recognise human gaits (including normal and abnormal). Since this system could be of great significance for the caring of the elderly, to promote and preserve their health and independence, the gait recognition system would be considered a primary function of the smart system for smart homes. The indoor gait recognition system is trained to detect abnormal gait patterns and generate warnings. The system works in real-time and is aimed to be installed at smart homes. This paper provides the information for further development of the system for their application in the future.


2018 ◽  
Vol 10 (1) ◽  
pp. 29 ◽  
Author(s):  
Mohammad H. Ghaeminia ◽  
Shahriar B. Shokouhi

Author(s):  
Azhin T. Sabir

Introduction: Nowadays human gait identification/recognition is available in a variety of applications due to rapid advances in biometrics technology. This makes them easier to use for security and surveillance. Due to the rise in terrorist attacks during the last ten years research has focused on the biometric traits in these applications and they are now capable of recognising human beings from a distance. The main reason for my research interest in Gait biometrics is because it is unobtrusive and requires lower image/video quality compared to other biometric traits. Materials and Methods: In this paper we propose investigating Kinect-based gait recognition using non-standard gait sequences. This study examines different scenarios to highlight the challenges of non-standard gait sequences. Gait signatures are extracted from the 20 joint points of the human body using a Microsoft Kinect sensor. Results and Discussion: This feature is constructed by calculating the distances between each two joint points from the 20 joint points of the human body provided which is known as the Euclidean Distance Feature (EDF). The experiments are based on five scenarios, and a Linear Discriminant Classifier (LDC) is used to test the performance of the proposed method. Conclusions: The results of the experiments indicate that the proposed method outperforms previous work in all scenarios.


Author(s):  
Seyyed Meysam Hosseini ◽  
Abbas Nasrabadi ◽  
Peyman Nouri ◽  
Hasan Farsi

2011 ◽  
Vol 15 ◽  
pp. 1832-1836 ◽  
Author(s):  
Yan-qiu Liu ◽  
Xu Wang

Author(s):  
Kushsairy Kadir ◽  
Nahid A Makhdoomi ◽  
Teddy S. Gunawan ◽  
Mohamed H. Habaebi ◽  
Hasmah Mansor

Sign in / Sign up

Export Citation Format

Share Document