scholarly journals A Novel Human Gait Recognition System

Author(s):  
Seyyed Meysam Hosseini ◽  
Abbas Nasrabadi ◽  
Peyman Nouri ◽  
Hasan Farsi
2010 ◽  
Vol 20 (1) ◽  
pp. 120-128 ◽  
Author(s):  
Md. Zia Uddin ◽  
Tae-Seong Kim ◽  
Jeong Tai Kim

Smart homes that are capable of home healthcare and e-Health services are receiving much attention due to their potential for better care of the elderly and disabled in an indoor environment. Recently the Center for Sustainable Healthy Buildings at Kyung Hee University has developed a novel indoor human activity recognition methodology based on depth imaging of a user’s activities. This system utilizes Independent Component Analysis to extract spatiotemporal features from a series of depth silhouettes of various activities. To recognise the activities from the spatiotemporal features, trained Hidden Markov Models of the activities would be used. In this study, this technique has been extended to recognise human gaits (including normal and abnormal). Since this system could be of great significance for the caring of the elderly, to promote and preserve their health and independence, the gait recognition system would be considered a primary function of the smart system for smart homes. The indoor gait recognition system is trained to detect abnormal gait patterns and generate warnings. The system works in real-time and is aimed to be installed at smart homes. This paper provides the information for further development of the system for their application in the future.


Author(s):  
Bilal Jawed ◽  
Othman O. Khalifa ◽  
Sharif Shah Newaj Bhuiyan

2019 ◽  
Vol 8 (2) ◽  
pp. 569-576
Author(s):  
Othman O. Khalifa ◽  
Bilal Jawed ◽  
Sharif Shah Newaj Bhuiyn

This paper represents a method for Human Recognition system using Principal Component Analysis. Human Gait recognition works on the gait of walking subjects to identify people without them knowing or without their permission. The initial step in this kind of system is to generate silhouette frames of walking human. A number of features couldb be exytacted from these frames such as centriod ratio, heifht, width and orientation. The Principal Component Analysis (PCA) is used for the extracted features to condense the information and produces the main components that can represent the gait sequences for each waiking human. In the testing phase, the generated gait sequences are recognized by using a minimum distance classifier based on eluclidean distance matched with the one that already exist in the database used to identify walking subject.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Hadi Sadoghi Yazdi ◽  
Hessam Jahani Fariman ◽  
Jaber Roohi

This paper presents a human gait recognition algorithm based on a leg gesture separation. Main innovation in this paper is gait recognition using leg gesture classification which is invariant to covariate conditions during walking sequence and just focuses on underbody motions and a neuro-fuzzy combiner classifier (NFCC) which derives a high precision recognition system. At the end, performance of the proposed algorithm has been validated by using the HumanID Gait Challenge data set (HGCD), the largest gait benchmarking data set with 122 objects with different realistic parameters including viewpoint, shoe, surface, carrying condition, and time. And it has been compared to recent algorithm of gait recognition.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1013
Author(s):  
Sayan Maity ◽  
Mohamed Abdel-Mottaleb ◽  
Shihab S. Asfour

Biometric identification using surveillance video has attracted the attention of many researchers as it can be applicable not only for robust identification but also personalized activity monitoring. In this paper, we present a novel multimodal recognition system that extracts frontal gait and low-resolution face images from frontal walking surveillance video clips to perform efficient biometric recognition. The proposed study addresses two important issues in surveillance video that did not receive appropriate attention in the past. First, it consolidates the model-free and model-based gait feature extraction approaches to perform robust gait recognition only using the frontal view. Second, it uses a low-resolution face recognition approach which can be trained and tested using low-resolution face information. This eliminates the need for obtaining high-resolution face images to create the gallery, which is required in the majority of low-resolution face recognition techniques. Moreover, the classification accuracy on high-resolution face images is considerably higher. Previous studies on frontal gait recognition incorporate assumptions to approximate the average gait cycle. However, we quantify the gait cycle precisely for each subject using only the frontal gait information. The approaches available in the literature use the high resolution images obtained in a controlled environment to train the recognition system. However, in our proposed system we train the recognition algorithm using the low-resolution face images captured in the unconstrained environment. The proposed system has two components, one is responsible for performing frontal gait recognition and one is responsible for low-resolution face recognition. Later, score level fusion is performed to fuse the results of the frontal gait recognition and the low-resolution face recognition. Experiments conducted on the Face and Ocular Challenge Series (FOCS) dataset resulted in a 93.5% Rank-1 for frontal gait recognition and 82.92% Rank-1 for low-resolution face recognition, respectively. The score level multimodal fusion resulted in 95.9% Rank-1 recognition, which demonstrates the superiority and robustness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document