Machining of aluminium nitride ceramic using developed hot abrasive jet machining: an experimental and simulation approach

Author(s):  
Subhadip Pradhan ◽  
Sourav Sanket Tripathy ◽  
Debabrata Dhupal
2019 ◽  
Author(s):  
Samer Wakim ◽  
Maroun Nemer ◽  
B. Zeghondy ◽  
Boutros Ghannam ◽  
C. Bouallou

2020 ◽  
Author(s):  
Polla Rouf ◽  
Pitsiri Sukkaew ◽  
Lars Ojamäe ◽  
Henrik Pedersen

<p>Aluminium nitride (AlN) is a semiconductor with a wide range of applications from light emitting diodes to high frequency transistors. Electronic grade AlN is routinely deposited at 1000 °C by chemical vapour deposition (CVD) using trimethylaluminium (TMA) and NH<sub>3</sub> while low temperature CVD routes to high quality AlN are scarce and suffer from high levels of carbon impurities in the film. We report on an ALD-like CVD approach with time-resolved precursor supply where thermally induced desorption of methyl groups from the AlN surface is enhanced by the addition of an extra pulse, H<sub>2</sub>, N<sub>2</sub> or Ar between the TMA and NH<sub>3</sub> pulses. The enhanced desorption allowed deposition of AlN films with carbon content of 1 at. % at 480 °C. Kinetic- and quantum chemical modelling suggest that the extra pulse between TMA and NH<sub>3</sub> prevents re-adsorption of desorbing methyl groups terminating the AlN surface after the TMA pulse. </p>


Sign in / Sign up

Export Citation Format

Share Document