scholarly journals The Maize Homologue of the Cell Cycle Checkpoint Protein MAD2 Reveals Kinetochore Substructure and Contrasting Mitotic and Meiotic Localization Patterns

1999 ◽  
Vol 145 (3) ◽  
pp. 425-435 ◽  
Author(s):  
Hong-Guo Yu ◽  
Michael G. Muszynski ◽  
R. Kelly Dawe

We have identified a maize homologue of yeast MAD2, an essential component in the spindle checkpoint pathway that ensures metaphase is complete before anaphase begins. Combined immunolocalization of MAD2 and a recently cloned maize CENPC homologue indicates that MAD2 localizes to an outer domain of the prometaphase kinetochore. MAD2 staining was primarily observed on mitotic kinetochores that lacked attached microtubules; i.e., at prometaphase or when the microtubules were depolymerized with oryzalin. In contrast, the loss of MAD2 staining in meiosis was not correlated with initial microtubule attachment but was correlated with a measure of tension: the distance between homologous or sister kinetochores (in meiosis I and II, respectively). Further, the tension-sensitive 3F3/2 phosphoepitope colocalized, and was lost concomitantly, with MAD2 staining at the meiotic kinetochore. The mechanism of spindle assembly (discussed here with respect to maize mitosis and meiosis) is likely to affect the relative contributions of attachment and tension. We support the idea that MAD2 is attachment-sensitive and that tension stabilizes microtubule attachments.

Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 629
Author(s):  
Massimo Pancione ◽  
Luigi Cerulo ◽  
Andrea Remo ◽  
Guido Giordano ◽  
Álvaro Gutierrez-Uzquiza ◽  
...  

Metastasis is a process by which cancer cells escape from the location of the primary tumor invading normal tissues at distant organs. Chromosomal instability (CIN) is a hallmark of human cancer, associated with metastasis and therapeutic resistance. The centrosome plays a major role in organizing the microtubule cytoskeleton in animal cells regulating cellular architecture and cell division. Loss of centrosome integrity activates the p38-p53-p21 pathway, which results in cell-cycle arrest or senescence and acts as a cell-cycle checkpoint pathway. Structural and numerical centrosome abnormalities can lead to aneuploidy and CIN. New findings derived from studies on cancer and rare genetic disorders suggest that centrosome dysfunction alters the cellular microenvironment through Rho GTPases, p38, and JNK (c-Jun N-terminal Kinase)-dependent signaling in a way that is favorable for pro-invasive secretory phenotypes and aneuploidy tolerance. We here review recent data on how centrosomes act as complex molecular platforms for Rho GTPases and p38 MAPK (Mitogen activated kinase) signaling at the crossroads of CIN, cytoskeleton remodeling, and immune evasion via both cell-autonomous and non-autonomous mechanisms.


2001 ◽  
Vol 287 (4) ◽  
pp. 932-940 ◽  
Author(s):  
Shuang-Lin Xiang ◽  
Tomoyasu Kumano ◽  
Shu-ichi Iwasaki ◽  
Xiangao Sun ◽  
Kastuji Yoshioka ◽  
...  

2006 ◽  
Vol 11 (4) ◽  
pp. 575-582 ◽  
Author(s):  
Vladic Mogila ◽  
Fan Xia ◽  
Willis X. Li

1994 ◽  
Vol 91 (7) ◽  
pp. 2684-2688 ◽  
Author(s):  
C. Y. Chen ◽  
J. D. Oliner ◽  
Q. Zhan ◽  
A. J. Fornace ◽  
B. Vogelstein ◽  
...  

1996 ◽  
Vol 93 (7) ◽  
pp. 2850-2855 ◽  
Author(s):  
K. A. Cimprich ◽  
T. B. Shin ◽  
C. T. Keith ◽  
S. L. Schreiber

2006 ◽  
Vol 172 (5) ◽  
pp. 655-662 ◽  
Author(s):  
Dileep Varma ◽  
Denis L. Dujardin ◽  
Stephanie A. Stehman ◽  
Richard B. Vallee

Zeste white 10 (ZW10) is a mitotic checkpoint protein and the anchor for cytoplasmic dynein at mitotic kinetochores, though it is expressed throughout the cell cycle. We find that ZW10 localizes to pericentriolar membranous structures during interphase and cosediments with Golgi membranes. Dominant-negative ZW10, anti-ZW10 antibody, and ZW10 RNA interference (RNAi) caused Golgi dispersal. ZW10 RNAi also dispersed endosomes and lysosomes. Live imaging of Golgi, endosomal, and lysosomal markers after reduced ZW10 expression showed a specific decrease in the frequency of minus end–directed movements. Golgi membrane–associated dynein was markedly decreased, suggesting a role for ZW10 in dynein cargo binding during interphase. We also find ZW10 enriched at the leading edge of migrating fibroblasts, suggesting that ZW10 serves as a general regulator of dynein function throughout the cell cycle.


Cell ◽  
1992 ◽  
Vol 71 (4) ◽  
pp. 587-597 ◽  
Author(s):  
Michael B. Kastan ◽  
Qimin Zhan ◽  
Wafik S. El-Deiry ◽  
France Carrier ◽  
Tyler Jacks ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document