scholarly journals T cell receptor antagonism interferes with MHC clustering and integrin patterning during immunological synapse formation

2004 ◽  
Vol 166 (4) ◽  
pp. 579-590 ◽  
Author(s):  
Cenk Sumen ◽  
Michael L. Dustin ◽  
Mark M. Davis

T cell activation by nonself peptide–major histocompatibility complex (MHC) antigenic complexes can be blocked by particular sequence variants in a process termed T cell receptor antagonism. The inhibition mechanism is not understood, although such variants are encountered in viral infections and may aid immune evasion. Here, we study the effect of antagonist peptides on immunological synapse formation by T cells. This cellular communication process features early integrin engagement and T cell motility arrest, referred to as the “stop signal.” We find that synapses formed on membranes presenting antagonist–agonist complexes display reduced MHC density, which leads to reduced T cell proliferation that is not overcome by the costimulatory ligands CD48 and B7-1. Most T cells fail to arrest and crawl slowly with a dense ICAM-1 crescent at the leading edge. Similar aberrant patterns of LFA-1/ICAM-1 engagement in live T–B couples correlate with reduced calcium flux and IL-2 secretion. Hence, antagonist peptides selectively disable MHC clustering and the stop signal, whereas LFA-1 valency up-regulation occurs normally.

Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1446
Author(s):  
June Guha ◽  
Raj Chari

T cell activation by antigen involves multiple sequential steps, including T cell receptor-microcluster TCR-(MC) formation, immunological synapse formation, and phosphorylation of mediators downstream of the TCR. The adaptor protein, Disc Large Homolog 1 (DLG1), is known to regulate proximal TCR signaling and, in turn, T cell activation, acting as a molecular chaperone that organizes specific kinases downstream of antigen recognition. In this study, we used knockdown and knockout technologies in human primary T cells and a human T cell line to demonstrate the role of DLG1 in proximal T cell signaling. High-end confocal microscopy was used for pictorial representation of T cell micro-clusters and colocalization studies. From all these studies, we could demonstrate that DLG1 functions even earlier than immunological synapse formation, to regulate T cell activation by promoting TCR-MC formation. Moreover, we found that DLG1 can act as a bridge between the TCR-ζ chain and ZAP70 while inhibiting binding of the phosphatase SHP1 to TCR-ζ. Together, these effects drive dysregulation of T cell activation in DLG1-deficient T cells. Overall, the activation and survival status of T cell is a critical determinant of effective vaccine response, and DLG1-mediated T cell signaling events can be a driving factor for improving vaccine-designing strategies.


Sign in / Sign up

Export Citation Format

Share Document