jurkat t cells
Recently Published Documents


TOTAL DOCUMENTS

613
(FIVE YEARS 68)

H-INDEX

57
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Arantxa Valdivia ◽  
Fabián Tarín ◽  
María Jesús Alcaraz ◽  
Paula Piñero ◽  
Ignacio Torres ◽  
...  

AbstractThe performance of a laboratory-developed IgG/IgA flow cytometry-based immunoassay (FCI) using Jurkat T cells stably expressing full-length native S protein was compared against Elecsys electrochemiluminiscent (ECLIA) Anti-SARS-CoV-2 S (Roche Diagnostics, Pleasanton, CA, USA), and Liaison SARS-CoV-2 TrimericS IgG chemiluminiscent assay (CLIA) (Diasorin S.p.a, Saluggia, IT) for detection of SARS-CoV-2-specific antibodies. A total of 225 serum/plasma specimens from 120 acute or convalescent COVID-19 individuals were included. Overall, IgG/IgA-FCI yielded the highest number of positives (n = 179), followed by IgA-FCI (n = 177), Roche ECLIA (n = 175), IgG-FCI (n = 172) and Diasorin CLIA (n = 154). For sera collected early after the onset of symptoms (within 15 days) IgG/IgA-FCI also returned the highest number of positive results (52/72; 72.2%). Positive percent agreement between FCI and compared immunoassays was highest for Roche ECLIA, ranging from 96.1 (IgG/IgA-FCI) to 97.7% (IgG-FCI), whereas negative percent agreement was higher between FCI and Diasosin CLIA, regardless of antibody isotype. The data suggest that FCI may outperform Roche ECLIA and Diasorin CLIA in terms of clinical sensitivity for serological diagnosis of SARS-CoV-2 infection.


2021 ◽  
pp. 104471
Author(s):  
Camilla Wilk ◽  
Laura Effenberg ◽  
Hanna Abberger ◽  
Laura Steenpass ◽  
Wiebke Hansen ◽  
...  
Keyword(s):  
T Cells ◽  

Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1705
Author(s):  
Sukhbir Kaur ◽  
Abdel G. Elkahloun ◽  
Jennifer D. Petersen ◽  
Anush Arakelyan ◽  
Ferenc Livak ◽  
...  

T cells and endothelial cells engage in bidirectional communication that regulates angiogenesis and T cell transmigration. Extracellular vesicles (EVs) mediate intercellular communication by the transfer of bioactive molecules including RNAs. EVs produced by a given cell type are heterogeneous in their RNA content, but it is unclear how specific EV surface markers relate to their functional effects on target cells. Our previous work established that Jurkat T cell EVs bearing CD63, MHC-I, or CD47 surface markers contain distinct noncoding RNA populations. The present study reveals that CD63+ and MHC-I+ EVs from CD47-deficient Jurkat T cells are enriched in small non-coding RNAs relative to EVs from wild-type Jurkat T cells. CD47-deficient Jurkat T cells secrete more CD63+ and MHC-I+ EVs, but MHC-I+ EVs are selectively taken up more by human umbilical vein endothelial cells. Transcriptomics analysis of endothelial cells treated with CD63+ or MHC-I+ EVs showed surface marker- and CD47-dependent changes in gene expression in the target cells. Gene set enrichment analysis identified CD47-dependent, and surface marker-dependent effects of T cell EVs on VEGF and inflammatory signaling, cell cycle, and lipid and cholesterol metabolism. Thus, subsets of T cell EVs differentially regulate endothelial cell metabolism and inflammatory and angiogenic responses.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi172-vi172
Author(s):  
Lei Ding ◽  
Lawrence Lamb

Abstract While recent advances in immunotherapies have shown promise in extracranial tumors, Glioblastoma Multiforme (GBM) has remained challenging. We have previously developed a novel approach to the treatment of primary GBM by combining simultaneous intracranial administration of gene-modified γδ T cells expressing O-6-Methylguanine-DNA Methyltransferase (MGMT) and standard temozolomide (TMZ) chemotherapy. To further improve tumor targeting and the efficacy of the γδ T cell against GBM, we modified γδ T cells with a CAR using chlorotoxin (CLTX), a small peptide derived from scorpion venom that specifically binds the glioma-specific chloride channel, as binding domains (CLTX-CARs). MGMTp140k was co-expressed within the same CLTX-CAR vectors to confer TMZ resistance to the CAR-T cells. We optimized the CAR constructs as CLTX-CD8a-CD28TM-CD28co-CD3z-P2A-MGMT and the activation of CD69 was verified in CLTX-CAR transduced Jurkat T cells with GBM cell co-culture. We further tested dual-CLTX-CAR constructs with 2x CLTX peptide as binding domains (dCLTX-CAR) and demonstrated dCLTX-CAR-Jurkat T cells can activate T cells efficiently with improved persistence compared to the mono-CLTX-CAR-Jurkat T cells 3 weeks after transduction (84% vs 37%). In order to preserve the powerful innate-recognition properties of γδ T cells, we developed CLTX-CARs without CD3z activation domain (NoZ-CLTX-CAR) to mitigate activation induced cell death (AICD) and tonic signaling issues. NoZ-CLTX-CAR-Jurkat T cells showed no CD69 activation with GBM cells co-culture and superior CAR-T persistence compared to CLTX-CARs with a CD3z signaling domain. Furthermore, we were able to efficiently transduce (up to 70% transduction efficiency) γδ T cells with NoZ-dCLTX-CAR lentiviral which demonstrated enhanced cytotoxicity against GBM cells compare to non-transduced control γδ T cells. Our approach of combining the dCLTX-CAR and TMZ resistance will be further validated in animal model experiments and could be a potential candidate for clinical development for GBM.


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A4.1-A4
Author(s):  
AS Herbstritt ◽  
M Maxwell ◽  
D Yan ◽  
B Cuiffo ◽  
J Cardia ◽  
...  

BackgroundEvidence indicates that diacylglycerol kinases (DGK) are promising targets for the optimization of T cell activity, for example in the setting of adoptive cell therapy (ACT). The tumor microenvironment (TME) of human renal cell carcinoma (RCC) is an immunosuppressive setting where T and NK cell functionality is blocked. DGK–α is a negative regulator of TCR signaling, functioning by metabolizing diacylglycerol to phosphatidic acid and thereby limiting the activation of MAPK/ERK1/2 signaling pathway. DGK-α is found increased in tumor-infiltrating lymphocytes (TIL) from RCC patients and also in adoptively transferred T cells after infiltrating into the TME.1 We previously reported that inhibition of DGK-α restored functionality of unresponsive CD8 T cells and NK cells from RCC-TIL. Other studies demonstrated that knockdown or pharmacologic inhibition of DGK-α and DGK-ζ alone or together increased target cell killing and cytokine production, and protected T cells from inhibitory factors in the TME.2 However, there are no inhibitors for DGK-ζ and available DGK-α inhibitors have undesired pharmacokinetic/pharmacodynamic properties and are highly toxic precluding their clinical application. Here, we present data using a novel RNA interference (RNAi) technology that can specifically target each DGK isoform.Materials and MethodsINTASYL™ compounds incorporate drug-like properties into RNAi, resulting not only in enhanced cellular uptake in the presence of serum but also eliminating the need for further transfection reagents. Toxicity of compounds applied alone or in combination was assessed by 7-AAD flow cytometry analysis and WST assay. Silencing of mRNA and protein was analyzed by RT-qPCR and SimpleWestern. Downstream signaling pathways and T cell function were analyzed to demonstrate pharmacological efficacy.ResultsTwo DGK-ζ compounds and one DGK-α compound were analyzed using Jurkat T cells and primary human TCR-transduced T cells. No effects were seen on cell viability for the compounds applied alone or in combination. On-target knockdown was achieved in Jurkat T cells evidenced by RT-qPCR and SimpleWestern. Silencing of mRNA and protein occurred quickly after 24h, peaked between 48h and 72h and lasted at least for 96h. Stimulation under DGK-targeting INTASYL treatment resulted in enhanced levels of phosphorylated ERK1/2 and enhanced secretion of IL-2.ConclusionsINTASYL™ self-delivering RNAi compounds represent a promising approach to target intracellular immune checkpoints such as DGKs. The good toxicity profile allows for combined application of several compounds enabling targeting of multiple checkpoints, which likely is necessary to counteract the complex and heterogeneous inhibitory influences of the TME. The technology enables the anti-tumor activity of T and NK cells for immunotherapy, and can be used in ACT and direct therapeutic applications towards the TME.ReferencesMoon EK, Wang L-C, Dolfi DV, Wilson CB, Ranganathan R, Sun J, et al. Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clin Cancer Res 2014;20(16):4262–73.Jung I-Y, Kim Y-Y, Yu H-S, Lee M, Kim S, Lee J. CRISPR/Cas9-mediated knockout of DGK improves antitumor activities of human T cells. Cancer Res 2018;78(16):4692–703.Disclosure InformationA.S. Herbstritt: C. Other Research Support (supplies, equipment, receipt of drugs or other in-kind support); Significant; Phio Pharmaceuticals. M. Maxwell: A. Employment (full or part-time); Significant; Phio Pharmaceuticals. D. Yan: A. Employment (full or part-time); Significant; Phio Pharmaceuticals. B. Cuiffo: A. Employment (full or part-time); Significant; Phio Pharmaceuticals. J. Cardia: A. Employment (full or part-time); Significant; Phio Pharmaceuticals. S.P. Fricker: A. Employment (full or part-time); Significant; Phio Pharmaceuticals. E. Noessner: C. Other Research Support (supplies, equipment, receipt of drugs or other in-kind support); Significant; Phio Pharmaceuticals.


2021 ◽  
pp. 107-119
Author(s):  
Ikenna Kingsley Uchendu ◽  
Ogbonna Kosisochukwu Doris ◽  
Oguji Cyprian Emeka ◽  
Omeh Johnson Obiechina ◽  
Ochi John Chidubem ◽  
...  

Author(s):  
Chunfeng Xie ◽  
Xu Zhou ◽  
Chunhua Liang ◽  
Xiaoting Li ◽  
Miaomiao Ge ◽  
...  

Abstract Background Recently, a variety of clinical trials have shown that apatinib, a small-molecule anti-angiogenic drug, exerts promising inhibitory effects on multiple solid tumors, including non-small cell lung cancer (NSCLC). However, the underlying molecular mechanism of apatinib on NSCLC remains unclear. Methods MTT, EdU, AO/EB staining, TUNEL staining, flow cytometry, colony formation assays were performed to investigate the effects of apatinib on cell proliferation, cell cycle distribution, apoptosis and cancer stem like properties. Wound healing and transwell assays were conducted to explore the role of apatinib on migration and invasion. The regulation of apatinib on VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling were detected. Furthermore, we collected conditioned medium (CM) from A549 and H1299 cells to stimulate phorbol myristate acetate (PMA)-activated THP-1 cells, and examined the effect of apatinib on PD-L1 expression in macrophages. The Jurkat T cells and NSCLC cells co-culture model was used to assess the effect of apatinib on T cells activation. Subcutaneous tumor formation models were established to evaluate the effects of apatinib in vivo. Histochemical, immunohistochemical staining and ELISA assay were used to examine the levels of signaling molecules in tumors. Results We showed that apatinib inhibited cell proliferation and promoted apoptosis in NSCLC cells in vitro. Apatinib induced cell cycle arrest at G1 phase and suppressed the expression of Cyclin D1 and CDK4. Moreover, apatinib upregulated Cleaved Caspase 3, Cleaved Caspase 9 and Bax, and downregulated Bcl-2 in NSCLC cells. The colony formation ability and the number of CD133 positive cells were significantly decreased by apatinib, suggesting that apatinib inhibited the malignant and stem-like features of NSCLC cells. Mechanistically, apatinib inhibited PD-L1 and c-Myc expression by targeting VEGFR2/STAT3 signaling. Apatinib also inhibited PD-L1 expression in THP-1 derived macrophages stimulated by CM from NSCLC cells. Furthermore, apatinib pretreatment increased CD69 expression and IFN-γ secretion in stimulated Jurkat T cells co-cultured with NSCLC cells. Apatinib also promoted ROS production and inhibited Nrf2 and p62 expression, leading to the autophagic and apoptotic cell death in NSCLC. Moreover, apatinib significantly inhibited tumor growth in vivo. Conclusion Our data indicated that apatinib induced autophagy and apoptosis in NSCLC via regulating VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Giovanna Peruzzi ◽  
Mattia Miotto ◽  
Roberta Maggio ◽  
Giancarlo Ruocco ◽  
Giorgio Gosti

AbstractAsymmetric inheritance of organelles and compounds between daughter cells is considered a hallmark for differentiation and rejuvenation in stem-like and cancer cells, as much as a mechanism for enhancing resistance in bacteria populations. In non-differentiating homogeneous cancer cells, asymmetric division is still poorly investigated. Here, we present a method based on the binomial partitioning process that allows the measurement of asymmetric organelle partitioning with multiple live cell markers without genetically mutating the cells. We demonstrate our method by measuring simultaneously the partitioning of three cellular elements, i.e., cytoplasm, membrane, and mitochondria in human Jurkat T-cells. We found that although cell cytoplasm is partitioned symmetrically, mitochondria and membrane lipids are asymmetrically partitioned between daughter cells. Moreover, we observe that mitochondria and membrane lipids present a stable positive correlation with cytoplasm, incompatibly with a binomial partition mechanism produced by two independent partitioning processes. Our experimental apparatus, combined with our theoretical framework, could be generalized to different cell kinds, providing a tool for understanding partitioning-driven biological processes.


2021 ◽  
Vol 22 (16) ◽  
pp. 8883
Author(s):  
Ameera M. Shaw ◽  
Ahmad Qasem ◽  
Saleh A. Naser

Crohn’s Disease (CD) and Rheumatoid Arthritis (RA) share some single nucleotide polymorphisms (SNPs) in protein tyrosine phosphatase non-receptor types 2 and 22 (PTPN2/22). Recently, we reported that clinical samples from CD and RA patients associated with PTPN2:rs478582 or PTPN22:rs2476601 genotypes were linked to overactive immune response and exacerbation of inflammation. Here, we investigated in vitro the effects of these SNPs in Jurkat T-cells using CRISPR-Cas9. All cells were evaluated for PTPN22/22 loss of function and effects on cell response. We measured gene expression via RT-qPCR and cytokines by ELISA. We also measured cell proliferation using a BrdU labeling proliferation ELISA, and T-cell activation using CD-25 fluorescent immunostaining. In PTPN2 SNP-edited cells, PTPN2 expression decreased by 3.2-fold, and proliferation increased by 10.2-fold compared to control. Likewise, expression of PTPN22 decreased by 2.4-fold and proliferation increased by 8.4-fold in PTPN22 SNP-edited cells. IFN-γ and TNF-α secretions increased in both edited cell lines. CD25 expression (cell activation) was 80.32% in PTPN2 SNP-edited cells and 85.82% in PTPN22 SNP-edited cells compared to 70.48% in unedited Jurkat T-cells. Treatment of PTPN2 and PTPN22-edited cells with a maximum 20 μM spermidine restored PTPN2/22 expression and cell response including cell proliferation, activation, and cytokines secretion. Most importantly, the effect of spermidine on edited cells restored normal expression and secretion of IFN-γ and TNF-α. The data clearly demonstrated that edited SNPs in PTPN2 or PTPN22 were associated with reduced gene expression, which resulted in an increase in cell proliferation and activation and overactive immune response. The data validated our earlier observations in CD and RA clinical samples. Surprisingly, spermidine restored PTPN2/22 expression in edited Jurkat T-cells and the consequent beneficial effect on cell response and inflammation. The study supports the use of polyamines dietary supplements for management of CD and in RA patients.


Sign in / Sign up

Export Citation Format

Share Document