Emission-Line Diagnostics of T Tauri Magnetospheric Accretion. I. Line Profile Observations

1998 ◽  
Vol 116 (1) ◽  
pp. 455-468 ◽  
Author(s):  
James Muzerolle ◽  
Lee Hartmann ◽  
Nuria Calvet
2005 ◽  
Vol 356 (4) ◽  
pp. 1489-1500 ◽  
Author(s):  
Neil H. Symington ◽  
Tim J. Harries ◽  
Ryuichi Kurosawa

Author(s):  
Suk Yee Yong ◽  
Rachel L. Webster ◽  
Anthea L. King ◽  
Nicholas F. Bate ◽  
Matthew J. O’Dowd ◽  
...  

AbstractThe structure and kinematics of the broad line region in quasars are still unknown. One popular model is the disk-wind model that offers a geometric unification of a quasar based on the viewing angle. We construct a simple kinematical disk-wind model with a narrow outflowing wind angle. The model is combined with radiative transfer in the Sobolev, or high velocity, limit. We examine how angle of viewing affects the observed characteristics of the emission line. The line profiles were found to exhibit distinct properties depending on the orientation, wind opening angle, and region of the wind where the emission arises.At low inclination angle (close to face-on), we find that the shape of the emission line is asymmetric, narrow, and significantly blueshifted. As the inclination angle increases (close to edge-on), the line profile becomes more symmetric, broader, and less blueshifted. Additionally, lines that arise close to the base of the disk wind, near the accretion disk, tend to be broad and symmetric. Single-peaked line profiles are recovered for the intermediate and equatorial wind. The model is also able to reproduce a faster response in either the red or blue sides of the line profile, consistent with reverberation mapping studies.


2021 ◽  
Vol 919 (2) ◽  
pp. 73
Author(s):  
Justin A. Kader ◽  
Liese van Zee ◽  
Kristen B. W. McQuinn ◽  
Laura C. Hunter

2013 ◽  
Vol 9 (S302) ◽  
pp. 80-83
Author(s):  
A. N. Aarnio ◽  
J. D. Monnier ◽  
T. J. Harries ◽  
D. M. Acreman

AbstractIn the presently favored picture of star formation, mass is transferred from disk to star via magnetospheric accretion and out of the system via magnetically driven outflows. This magnetically mediated mass flux is a fundamental process upon which the evolution of the star, disk, and forming planetary system depends. Our current understanding of these processes is heavily rooted in young solar analogs, T Tauri Stars (TTS). We have come to understand recently, however, that the higher mass pre-main sequence (PMS) Herbig AeBe (HAeBe) stars have dramatically weaker dipolar fields than their lower mass counterparts. We present our current observational and theoretical efforts to characterize magnetospherically mediated mass transfer within HAeBe star+disk systems. We have gathered a rich spectroscopic and interferometric data set for several dozen HAeBe stars in order to measure accretion and mass loss rates, assess wind and magnetospheric accretion properties, and determine how spectral lines and interferometric visibilities are diagnostic of these processes. For some targets, we have observed spectral line variability and will discuss ongoing time-series spectroscopic efforts.


Sign in / Sign up

Export Citation Format

Share Document