emission line profile
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 5)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 919 (2) ◽  
pp. 73
Author(s):  
Justin A. Kader ◽  
Liese van Zee ◽  
Kristen B. W. McQuinn ◽  
Laura C. Hunter

2020 ◽  
Vol 642 ◽  
pp. A56 ◽  
Author(s):  
R. Bonito ◽  
L. Prisinzano ◽  
L. Venuti ◽  
F. Damiani ◽  
G. Micela ◽  
...  

Context. NGC 2264 is a young cluster whose accretion properties can be investigated in detail by taking advantage of the FLAMES data in the context of the Gaia-ESO Survey. In fact, the analysis of the Hα emission line profile can provide us with information about the accretion and ejection activity of young stars. However, a strong nebular emission that contributes to the Hα emission can alter the profiles, with consequences for their physical interpretation. Aims. Our study is aimed at investigating the accretion and ejection properties of NGC 2264 by applying a proper treatment of the sky contribution to the Hα and forbidden emission lines (FELs; [SII] and [NII] doublets). Methods. We developed a tool, the OHαNA-method, to handle the strong nebular contribution and spectra with spurious profiles of the Hα and FELs, namely altered Hα profiles or absorption features artificially created where emission lines (FELs) are expected. We derived the quantitative measurements of relevant parameters to describe the accretion and ejection processes in young members of NGC 2264, focusing on reliable quantities derived from the width of the lines, which is relatively unaffected by the nebular emission, unlike the intensity peak, which can be altered significantly. Results. We derive the quantitative measurements related to the Hα emission line and discuss the comparison between the original and sky-subtracted spectra. We thus reveal possible profile alterations with consequences for their physical interpretation. Furthermore, we show the analysis of the variability for multi-epoch observations, also deriving the velocity of the infalling and outflowing plasma from the wings of the broad Hα emission line (in accreting stars). We also explore the mass accretion rate versus full width at zero intensity of the Hα line, namely Ṁ versus FWZI(Hα), a correlation based on the width of the emission line, which is expected to be more robust with respect to any measurement derived from the peak (e.g., Hα10%) and possibly altered by the nebular contribution. Conclusions. We are able to ascertain that more than 20% of the confirmed accretors, which have already been identified in NGC 2264, are affected by the alteration of their line profiles due to the contribution of the nebular emission. Therefore, this is an important issue to consider when investigating accretion and ejection processes in young stellar clusters. While a small fraction of spectra can be unequivocally classified as either unaffected by nebular emission or dominated by nebular emission, the majority (> 90%) represent intermediate cases whose spectral features have to be investigated in detail to derive reliable measurements of the relevant parameters and their physical implications.


2020 ◽  
Vol 498 (3) ◽  
pp. 3835-3851 ◽  
Author(s):  
Christopher Bilinski ◽  
Nathan Smith ◽  
G Grant Williams ◽  
Paul Smith ◽  
Jennifer Andrews ◽  
...  

ABSTRACT We present photometry, spectra, and spectropolarimetry of supernova (SN) 2014ab, obtained through ∼200 d after peak brightness. SN 2014ab was a luminous Type IIn SN (MV < −19.14 mag) discovered after peak brightness near the nucleus of its host galaxy, VV 306c. Pre-discovery upper limits constrain the time of explosion to within 200 d prior to discovery. While SN 2014ab declined by ∼1 mag over the course of our observations, the observed spectrum remained remarkably unchanged. Spectra exhibit an asymmetric emission-line profile with a consistently stronger blueshifted component, suggesting the presence of dust or a lack of symmetry between the far side and near side of the SN. The Pa β emission line shows a profile very similar to that of H α, implying that this stronger blueshifted component is caused either through obscuration by large dust grains, occultation by optically thick material, or a lack of symmetry between the far side and near side of the interaction region. Despite these asymmetric line profiles, our spectropolarimetric data show that SN 2014ab has little detected polarization after accounting for the interstellar polarization. We are likely seeing emission from a photosphere that has only small deviation from circular symmetry in the plane normal to our line of sight, but with either large-grain dust or significant asymmetry in the density of circumstellar material or SN ejecta along our line of sight. We suggest that SN 2014ab and SN 2010jl (as well as other SNe IIn) may be events with similar geometry viewed from different directions.


2019 ◽  
Vol 486 (1) ◽  
pp. 1392-1403 ◽  
Author(s):  
Fakhri S Zahedy ◽  
Michael Rauch ◽  
Hsiao-Wen Chen ◽  
Robert F Carswell ◽  
Brian Stalder ◽  
...  

Abstract Observing the signature of accretion from the intergalactic medium (IGM) on to galaxies at z ∼ 3 requires the detection of faint (L ≪ L*) galaxies embedded in a filamentary matrix of low-density ($\rho \lt 100\ \overline{\rho }$), metal-poor gas (Z ∼ 10−2.5 Z⊙) coherent over hundreds of kpc. We study the gaseous environment of three Lyα emitters (LAEs) at z = 2.7 − 2.8, found to be aligned in projection with a background QSO over ∼250 kpc along the slit of a long-slit spectrum. The lack of detection of the LAEs in deep continuum images and the low inferred Lyα luminosities show the LAEs to be intrinsically faint, low-mass galaxies ($L\lesssim 0.1\, L^*$, $M_\mathrm{star}\lesssim 0.1\, M^*$). An echelle spectrum of the QSO reveals strong Lyα absorption within ±200 km s−1 from the LAEs. Our absorption line analysis leads to $\rm{H\,{\small I}}$ column densities in the range of log $N\mathrm{(\rm{H\,{\small I}})}/\mbox{${\rm cm^{-2}}$}=16\!-\!18$. Associated absorption from ionic metal species $\rm{C\,{\small IV}}$ and $\rm{Si\,{\small IV}}$ constrains the gas metallicities to ∼0.01 solar if the gas is optically thin, and possibly as low as ∼0.001 solar if the gas is optically thick, assuming photoionization equilibrium. While the inferred metallicities are at least a factor of 10 lower than expected metallicities in the interstellar medium (ISM) of these LAEs, they are consistent with the observed chemical enrichment level in the IGM at the same epoch. Total metal abundances and kinematic arguments suggest that these faint galaxies have not been able to affect the properties of their surrounding gas. The projected spatial alignment of the LAEs, together with the kinematic quiescence and correspondence between the LAEs and absorbing gas in velocity space, suggests that these observations probe a possible filamentary structure. Taken together with the blue-dominant Lyα emission line profile of one of the objects, the evidence suggests that the absorbing gas is part of an accretion stream of low-metallicity gas in the IGM.


2018 ◽  
Vol 617 ◽  
pp. A54 ◽  
Author(s):  
H. Liszt ◽  
M. Gerin ◽  
I. Grenier

Context. More gas is inferred to be present in molecular cloud complexes than can be accounted for by H I and CO emission, a phenomenon known as dark neutral medium (DNM) or CO-dark gas for the molecular part. Aims. We aim to investigate whether molecular gas can be detected in Chamaeleon where gas column densities in the DNM were inferred and CO emission was not detected. Methods. We took λ3 mm absorption profiles of HCO+ and other molecules toward 13 background quasars across the Chamaeleon complex, only one of which had detectable CO emission. We derived the H2 column density assuming N(HCO+)/N(H2) = 3 × 10−9 as before. Results. With the possible exception of one weak continuum target, HCO+ absorption was detected in all directions, C2H in eight directions and HCN in four directions. The sightlines divide into two groups according to their DNM content, with one group of eight directions having N(DNM) ≳ 2 × 1020 cm−2 and another group of five directions having N(DNM) < 0.5 × 1020 cm−2. The groups have comparable mean N(H I) associated with Chamaeleon 6−7 × 1020 cm−2 and total hydrogen column density per unit reddening 6−7 × 1021 cm−2 mag−1. They differ, however, in having quite different mean reddening 0.33 vs. 0.18 mag, mean N(DNM) 3.3 vs. 0.14 × 1020 cm−2 and mean molecular column density 2N(H2) = 5.6 vs. 0.8 × 1020 cm−2. The gas at more positive velocities is enriched in molecules and DNM. Conclusions. Overall the quantity of H2 inferred from HCO+ can fully account for the previously inferred DNM along the sightlines studied here. H2 is concentrated in the high-DNM group, where the molecular fraction is 46% vs. 13% otherwise and 38% overall. Thus, neutral gas in the outskirts of the complex is mostly atomic but the DNM is mostly molecular. Saturation of the H I emission line profile may occur along three of the four sightlines having the largest DNM column densities, but there is no substantial reservoir of “dark” atomic or molecular gas that remains undetected as part of the inventory of dark neutral medium.


2018 ◽  
Vol 14 (S346) ◽  
pp. 88-92
Author(s):  
N. Miller ◽  
W. Waldron ◽  
J. Nichols ◽  
D. Huenemoerder ◽  
M. Dahmer ◽  
...  

AbstractThe stellar winds of hot stars have an important impact on both stellar and galactic evolution, yet their structure and internal processes are not fully understood in detail. One of the best nearby laboratories for studying such massive stellar winds is the O4I(n)fp star ζ Pup. After briefly discussing existing X-ray observations from Chandra and XMM, we present a simulation of X-ray emission line profile measurements for the upcoming 840 kilosecond Chandra HETGS observation. This simulation indicates that the increased S/N of this new observation will allow several major steps forward in the understanding of massive stellar winds. By measuring X-ray emission line strengths and profiles, we should be able to differentiate between various stellar wind models and map the entire wind structure in temperature and density. This legacy X-ray spectrum of ζ Pup will be a useful benchmark for future X-ray missions.


2013 ◽  
Vol 777 (1) ◽  
pp. 81
Author(s):  
Maurice A. Leutenegger ◽  
David H. Cohen ◽  
Jon O. Sundqvist ◽  
Stanley P. Owocki

2013 ◽  
Vol 9 (S304) ◽  
pp. 261-264
Author(s):  
Daniel M. Capellupo ◽  
Hagai Netzer ◽  
Paulina Lira ◽  
Benny Trakhtenbrot ◽  
Julián Mejía

AbstractThe physics of active black holes (BHs) is governed by three key parameters: their mass, spin, and accretion rate. Understanding the cosmic evolution of these parameters is crucial for tracing back the growth of the BHs to the epoch of their formation. We have selected a unique AGN sample, in a narrow redshift range around z = 1.55, based on both BH mass and Eddingtion ratio, and we observed them with the X-Shooter instrument on the VLT, covering the rest wavelength range ~1200 to 9800 Å. This wide wavelength range allows us to study, simultaneously, more emission lines (i.e., CIV 1550 Å through H-alpha), and a larger portion of the global AGN SED, than any previous studies. We currently have a sample of 30 quasars already observed and spanning BH masses from ~108 to 109 Msolar and Eddington ratio from ~0.03 to 0.7. We focus here on our first science goal, comparing the observed AGN SED to thin accretion disk models in order to identify the origin of the SED. We also discuss the unique capability of this sample to identify any emission-line profile dependencies on BH mass and the Eddington ratio, and to compare mass determination methods based on four different emission-line profiles (Hα, Hβ, MgII 2800 Å, and CIV 1550 Å).


2013 ◽  
Vol 770 (1) ◽  
pp. 80 ◽  
Author(s):  
Maurice A. Leutenegger ◽  
David H. Cohen ◽  
Jon O. Sundqvist ◽  
Stanley P. Owocki

Sign in / Sign up

Export Citation Format

Share Document