orbital phase
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 58)

H-INDEX

23
(FIVE YEARS 5)

2022 ◽  
Vol 924 (2) ◽  
pp. 65
Author(s):  
Lupin Chun-Che Lin ◽  
Chin-Ping Hu ◽  
Jumpei Takata ◽  
Kwan-Lok Li ◽  
C. Y. Hui ◽  
...  

Abstract We perform both timing and spectral analyses using the archival X-ray data taken with Swift, XMM-Newton, NICER, and NuSTAR from 2016 to 2020 to study an ultraluminous pulsar, NGC 7793 P13, that showed a long period of super-Eddington accretion. We use the Rayleigh test to investigate the pulsation at different epochs, and confirm the variation of the pulse profile with finite Gaussian mixture modeling and a two-sample Kuiper test. Taking into account the periodic variation of the spin periods caused by the orbital Doppler effect, we further determine an orbital period of ∼65 days and show that no significant correlation can be detected between the orbital phase and the pulsed fraction. The pulsed spectrum of NGC 7793 P13 in the 0.5–20 keV range can be simply described using a power law with a high-energy exponential cutoff, while the broadband phase-averaged spectrum of the same energy range requires two additional components to account for the contribution of a thermal accretion disk and the Comptonization photons scattered into the hard X-rays. We find that NGC 7793 P13 stayed in the hard ultraluminous state and the pulsed spectrum was relatively soft when the source was faint at the end of 2019. Moreover, an absorption feature close to 1.3 keV is marginally detected from the pulsed spectra and it is possibly associated with a cyclotron resonant scattering feature.


2021 ◽  
Vol 13 (24) ◽  
pp. 5124
Author(s):  
Huiqiang Wang ◽  
Yushan Zhou ◽  
Haiqiang Fu ◽  
Jianjun Zhu ◽  
Yanan Yu ◽  
...  

The TerraSAR-X add-on for Digital Elevation Measurements (TanDEM-X) bistatic system provides high-resolution and high-quality interferometric data for global topographic measurement. Since the twin TanDEM-X satellites fly in a close helix formation, they can acquire approximately simultaneous synthetic aperture radar (SAR) images, so that temporal decorrelation and atmospheric delay can be ignored. Consequently, the orbital error becomes the most significant error limiting high-resolution SAR interferometry (InSAR) applications, such as the high-precision digital elevation model (DEM) reconstruction, subway and highway deformation monitoring, landslide monitoring and sub-canopy topography inversion. For rugged mountainous areas, in particular, it is difficult to estimate and correct the orbital phase error in TanDEM-X bistatic InSAR. Based on the rigorous InSAR geometric relationship, the orbital phase error can be attributed to the baseline errors (BEs) after fixing the positions of the master SAR sensor and the targets on the ground surface. For the constraint of the targets at a study scene, the freely released TanDEM-X DEM can be used, due to its consistency with the TanDEM-X bistatic InSAR-measured height. As a result, a parameterized model for the orbital phase error estimation is proposed in this paper. In high-resolution and high-precision TanDEM-X bistatic InSAR processing, due to the limited precision of the navigation systems and the uneven baseline changes caused by the helix formation, the BEs are time-varying in most cases. The parameterized model is thus built and estimated along each range line. To validate the proposed method, two mountainous test sites located in China (i.e., Fuping in Shanxi province and Hetang in Hunan province) were selected. The obtained results show that the orbital phase errors of the bistatic interferograms over the two test sites are well estimated. Compared with the widely applied polynomial model, the residual phase corrected by the proposed method contains little undesirable topography-dependent phase error, and avoids unexpected height errors ranging about from −6 m to 3 m for the Fuping test site and from −10 m to 8 m for the Hetang test site. Furthermore, some fine details, such as ridges and valleys, can be clearly identified after the correction. In addition, the two components of the orbital phase error, i.e., the residual flat-earth phase error and the topographic phase error caused by orbital error, are separated and quantified based on the parameterized expression. These demonstrate that the proposed method can be used to accurately estimate and mitigate the orbital phase error in TanDEM-X bistatic InSAR data, which increases the feasibility of reconstructing high-resolution and high-precision DEM. The rigorous geometric constraint, the refinement of the initial baseline parameters, and the assessment for height errors based on the estimated BEs are investigated in the discussion section of this paper.


2021 ◽  
Vol 922 (2) ◽  
pp. 260
Author(s):  
Hu Xingxing ◽  
Takata Jumpei

Abstract The polarization of X-ray emission is a unique tool used to investigate the magnetic field structure around astrophysical objects. In this paper, we study the linear polarization of X-ray emissions from gamma-ray binary systems based on pulsar scenarios. We discuss synchrotron emission from pulsar wind particles accelerated by a standing shock. We explore three kinds of axisymmetric magnetic field structures: (i) toroidal magnetic fields, (ii) poloidal magnetic fields, and (iii) tangled magnetic fields. Because of the axisymmetric structure, the polarization angle of integrated emission is oriented along or perpendicular to the shock-cone axis projected on the sky and swings around 360° in one orbit. For the toroidal case, the polarization angle is always directed along the shock-cone axis and smoothly changes along the orbital phase. For the poloidal/tangled magnetic field, the direction of the polarization angle depends on the system parameters and orbital phase. In one orbit, the polarization degree for the toroidal case can reach the maximum value of the synchrotron radiation (∼70%), while the maximum polarization degree for poloidal/tangled field cases is several 10%. We apply our model to bright gamma-ray binary LS 5039 and make predictions for future observations. With the expected sensitivity of the Imaging X-ray Polarimetry Explorer, linear polarization can be detected by an observation of several days if the magnetic field is dominated by the toroidal magnetic field. If the magnetic field is dominated by the poloidal/tangled field, significant detection is expected with an observation longer than 10 days.


2021 ◽  
Vol 923 (1) ◽  
pp. 17
Author(s):  
Y. M. Tokayer ◽  
H. An ◽  
J. P. Halpern ◽  
J. Kim ◽  
K. Mori ◽  
...  

Abstract HESS J0632+057 belongs to a rare subclass of binary systems that emit gamma rays above 100 GeV. It stands out for its distinctive high-energy light curve, which features a sharp “primary” peak and broader “secondary” peak. We present the results of contemporaneous observations by NuSTAR and VERITAS during the secondary peak between 2019 December and 2020 February, when the orbital phase (ϕ) is between 0.55 and 0.75. NuSTAR detected X-ray spectral evolution, while VERITAS detected TeV emission. We fit a leptonic wind-collision model to the multiwavelength spectra data obtained over the four NuSTAR and VERITAS observations, constraining the pulsar spin-down luminosity and the magnetization parameter at the shock. Despite long-term monitoring of the source from 2019 October to 2020 March, the MDM observatory did not detect significant variation in Hα and Hβ line equivalent widths, an expected signature of Be-disk interaction with the pulsar. Furthermore, fitting folded Swift-XRT light-curve data with an intrabinary shock model constrained the orbital parameters, suggesting two orbital phases (at ϕ D = 0.13 and 0.37), where the pulsar crosses the Be-disk, as well as phases for the periastron (ϕ 0 = 0.30) and inferior conjunction (ϕ IFC = 0.75). The broadband X-ray spectra with Swift-XRT and NuSTAR allowed us to measure a higher neutral hydrogen column density at one of the predicted disk-passing phases.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 443
Author(s):  
Lorenzo Iorio

One of the post-Keplerian (PK) parameters determined in timing analyses of several binary pulsars is the fractional periastron advance per orbit kPK. Along with other PK parameters, it is used in testing general relativity once it is translated into the periastron precession ω˙PK. It was recently remarked that the periastron ω of PSR J0737–3039A/B may be used to measure/constrain the moment of inertia of A through the extraction of the general relativistic Lense–Thirring precession ω˙LT,A≃−0.00060∘yr−1 from the experimentally determined periastron rate ω˙obs provided that the other post-Newtonian (PN) contributions to ω˙exp can be accurately modeled. Among them, the 2PN seems to be of the same order of magnitude of ω˙LT,A. An analytical expression of the total 2PN periastron precession ω˙2PN in terms of the osculating Keplerian orbital elements, valid not only for binary pulsars, is provided, thereby elucidating the subtleties implied in correctly calculating it from k1PN+k2PN and correcting some past errors by the present author. The formula for ω˙2PN is demonstrated to be equivalent to that obtainable from k1PN+k2PN by Damour and Schäfer expressed in the Damour–Deruelle (DD) parameterization. ω˙2PN actually depends on the initial orbital phase, hidden in the DD picture, so that −0.00080∘yr−1≤ω˙2PN≤−0.00045∘yr−1. A recently released prediction of ω˙2PN for PSR J0737–3039A/B is discussed.


2021 ◽  
Vol 922 (1) ◽  
pp. 37
Author(s):  
Jian-Wen Ou ◽  
Cong Yu ◽  
Ming Yang ◽  
Chen Jiang ◽  
Bo Ma ◽  
...  

Abstract Apsidal motion is a gradual shift in the position of periastron. The impact of dynamic tides on apsidal motion has long been debated, because the contribution could not be quantified due to the lack of high-quality observations. KIC 4544587 with tidally excited oscillations has been observed by Kepler high-precision photometric data based on long-time-baseline and short-cadence schema. In this paper, we compute the rate of apsidal motion that arises from the dynamic tides as 19.05 ± 1.70 mrad yr−1 via tracking the orbital phase shifts of tidally excited oscillations. We also calculate the procession rate of the orbit due to the Newtonian and general relativistic contribution as 21.49 ± 2.8 and 2.4 ± 0.06 mrad yr−1, respectively. The sum of these three factors is in excellent agreement with the total observational rate of apsidal motion 42.97 ± 0.18 mrad yr−1 measured by eclipse timing variations. The tidal effect accounts for about 44% of the overall observed apsidal motion and is comparable to that of the Newtonian term. Dynamic tides have a significant contribution to the apsidal motion. The analysis method mentioned in this paper presents an alternative approach to measuring the contribution of the dynamic tides quantitatively.


2021 ◽  
Author(s):  
Shuping Guo ◽  
Shashwat Anand ◽  
Madison K. Brod ◽  
Yongsheng Zhang ◽  
G. Jeffrey Snyder

Semiconducting half-Heusler (HH, XYZ) phases are promising thermoelectric materials owing to their versatile electronic properties. Because the valence band of half-Heusler phases benefit from the valence band extrema at several high-symmetry points in the Brillouin zone (BZ), it is possible to engineer better p-type HH materials through band convergence. However, the thermoelectric studies of n-type HH phases have been lagging behind since the conduction band minimum is always at the same high-symmetry point (X) in the BZ, giving the impression that there is little opportunity for band engineering. Here we study the n-type orbital diagram of 69 HHs, and show that there are two competing conduction bands with very different effective masses actually at the same X point in the BZ, which can be engineered to be converged. The two conduction bands are dominated by the d orbitals of X and Y atoms, respectively. The energy offset between the two bands depends on the difference in electron configuration and electronegativity of the X and Y atoms. Based on the orbital phase diagram, we provide the strategy to engineer the conduction band convergence by mixing the HH compounds with the reverse band offsets. We demonstrate the strategy by alloying VCoSn and TaCoSn. The V0.5Ta0.5CoSn mixture presents the high conduction band convergence and corresponding significantly larger density-of-states effective mass than either VCoSn or TaCoSn. Our work indicates that analyzing the orbital character of band edges provides new insight into engineering thermoelectric performance of HH compounds.


Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 320
Author(s):  
Yuki Moritani ◽  
Akiko Kawachi

Optical and near-infrared observations are compiled for the three gamma-ray binaries hosting Be stars: PSR B1259−63, LSI+61 303, and HESS J0632+057. The emissions from the Be disk are considered to vary according to the changes in its structure, some of which are caused by interactions with the compact object (e.g., tidal forces). Due to the high eccentricity and large orbit of these systems, the interactions—and, hence the resultant observables—depend on the orbital phase. To explore such variations, multi-band photometry and linear polarization were monitored for the three considered systems, using two 1.5 m-class telescopes: IRSF at the South African Astronomical Observatory and Kanata at the Higashi–Hiroshima Observatory.


2021 ◽  
Vol 507 (3) ◽  
pp. 4053-4060
Author(s):  
H C Das ◽  
Ankit Kumar ◽  
S K Patra

ABSTRACT Using the relativistic mean-field model, we calculate the properties of binary neutron star (BNS) in the in-spiral phase. Assuming the dark matter (DM) particles are accreted inside the neutron star (NS) due to its enormous gravitational field, the mass M, radius R, tidal deformability λ, and dimensionless tidal deformability Λ are calculated at different DM fractions. The value of M, R, λ, and Λ decreases with the increase of DM percentage inside the NS. The in-spiral phase properties of the BNS are explored within the post-Newtonian (PN) formalism, as it is suitable up to the last orbits in the in-spiral phase. We calculate the strain amplitude of the polarization waveform h+ and h×, (2,2) mode waveform h22, orbital phase Φ, frequency of the gravitational wave f, and PN parameter x with DM as an extra candidate inside the NS. The magnitude of f, Φ, and x are almost the same for all assumed forces; however, the in-spiral time duration in the last orbit is different. We find that the BNS with soft equation of state and a high fraction of DM sustains more time in their in-spiral phase. We suggest that one should take DM inside the NS when they modelling the in-spiral waveforms for the BNS systems.


Sign in / Sign up

Export Citation Format

Share Document