Comparative in Vitro Activity of Antiseptics and Disinfectants Versus Clinical Isolates ofCandida Species

1999 ◽  
Vol 20 (10) ◽  
pp. 676-684 ◽  
Author(s):  
Jan Silverman ◽  
Jose A. Vazquez ◽  
Jack D. Sobel ◽  
Marcus J. Zervos

AbstractObjective:To evaluate the in vitro activity of antiseptics and detergents againstCandida.Design:One strain each ofCandida albicans, Candida tropicalis, Candida lusitaniae, Candida parapsilosis, Candida kefyr, Candida glabrata,and an American Type Culture Collection strain ofEscherichia coli(control) were studied. Clinical isolates were obtained from patients in a bone marrow unit of a large tertiary hospital. Antiseptic and disinfectant agents studied were used in the hospital where isolates were identified for cleaning of inanimate surfaces or hand washing. In vitro susceptibility was determined using a broth macrodilution method with exposure times to antiseptic or disinfectant agent of 15 seconds to 4 minutes and concentrations of agents that ranged from undiluted to 1:10,000 dilution.Setting:A 900-bed teaching hospital.Results:Of disinfectants tested, Vestal and Sparquat inhibited growth of all species at dilutions of ≤1:100 at all contact times for all species. Clorox showed inhibition of growth at 1:100 dilution after 30 seconds of contact time for all isolates. Of antiseptics studied, Hibiclens inhibited growth of all species exceptC tropicalisat dilutions of ≤1:100 at all contact times and for Ctropicalisafter 60 seconds. Clinidine inhibited growth of all species at dilutions of ≤1:100 at all contact times for all species with the exception ofC glabrataandC tropicalis,which grew at the undiluted concentration. Ultradex failed to demonstrate killing of any species for any dilutions tested.Conclusions:The results of this study show varying degrees of in vitro inhibition of growth by a variety of antiseptics and disinfectants against clinical isolates ofCandidaspecies from hospitalized patients.

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S656-S656
Author(s):  
Hamid Badali ◽  
Hoja Patterson ◽  
Carmita Sanders ◽  
Barbara Mermella ◽  
Connie Gibas ◽  
...  

Abstract Background Invasive fusariosis is associated with marked morbidity and mortality in immunocompromised hosts, and treatment options are limited. Common etiologic agents include members of the F. oxysporum and F. solani species complexes (FOSC and FSSC, respectively). Manogepix (MGX), the active moiety of fosmanogepix, is a novel GWT1 inhibitor with broad antifungal activity. Fosmanogepix has previously shown in vivo efficacy in an immunocompromised murine model of invasive fusariosis. Our objective was to evaluate the in vitro activity of MGX against FOSC and FSSC isolates. Methods Clinical isolates of FOSC (n=49) and FSSC (19) were identified by combined phenotypic characteristics and DNA sequence analysis of the translation elongation factor 1-alpha (TEF1α) and RNA polymerase II second largest subunit (RPB2). Antifungal susceptibility testing was performed by CLSI M38 broth microdilution. Minimum effective concentrations (MEC) and minimum inhibitory concentrations (MIC) were read after 48 hours of incubation at 50% and 100% inhibition of growth for MGX, and MIC values were read for amphotericin B, posaconazole, isavuconazole, and voriconazole at 100% inhibition of growth. Results MGX demonstrated potent in vitro activity against both FOSC and FSSC isolates. Against the 49 FOSC isolates, the MGX MECs ranged from <0.015-0.03 mg/mL, and MICs at the 50% inhibition of growth endpoint ranged from <0.015-0.12 mg/mL (Table). MIC values were higher when read at 100% inhibition of growth. Similar results were observed against FSSC isolates (MEC and MIC ranges <0.015 and <0.015-0.25 mg/mL, respectively). MGX MEC and MIC 50% inhibition values were in close agreement for both FOSC and FSSC isolates. Of the other antifungals tested, amphotericin B demonstrated in vitro good activity (MIC ranges 1-4 and 0.25-4 mg/mL against FOSC and FSSC, respectively). In contrast, the azoles demonstrated reduced susceptibility (MIC range 1- >16 mg/mL). MIC/MEC values (mcg/mL) for manogepix and other antifungals against FOSC and FSSC isolates Conclusion MGX demonstrated in vitro activity against FOSC and FSSC clinical isolates. Both changes in fungal morphology (MEC) and reductions in growth (MIC 50% inhibition) were observed. Clinical studies are ongoing to determine the efficacy of fosmanogepix in patients with invasive fungal infections. Disclosures Ashraf S. Ibrahim, PhD, Astellas Pharma (Research Grant or Support) Karen J. Shaw, PhD, Amplyx (Consultant)Forge Therapeutics (Consultant) Nathan P. Wiederhold, PharmD, Astellas (Grant/Research Support)BioMerieux (Grant/Research Support)Cepheid (Grant/Research Support)Covance (Grant/Research Support)F2G (Grant/Research Support)Gilead (Speaker’s Bureau)Mayne Pharma (Advisor or Review Panel member)Sfunga (Grant/Research Support)


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S792-S793
Author(s):  
Lynn-Yao Lin ◽  
Dmitri Debabov ◽  
William Chang ◽  
Urania Rappo

Abstract Background AmpC overproduction is a main mechanism of carbapenem resistance, in the absence of acquired carbapenemases. Ceftazidime-avibactam (CAZ-AVI) has potent in vitro activity against AmpC-producing P. aeruginosa and Enterobacterales that are resistant to carbapenems and other β-lactams. Methods Activity of CAZ-AVI and comparators was evaluated against AmpC-overproducing Enterobacterales (n=77) and P. aeruginosa (n=53) collected from 4 CAZ-AVI clinical trials: RECLAIM (complicated intra-abdominal infection [cIAI]), REPRISE (cIAI/complicated urinary tract infection [cUTI]), RECAPTURE (cUTI) and REPROVE (hospital-acquired pneumonia/ventilator associated pneumonia). In vitro susceptibility of CAZ-AVI and comparators was performed by broth microdilution using ThermoFisher custom panels. CLSI breakpoints were used to determine susceptibility. Quantitative PCR and microarray data were used to characterize presence and expression of AmpC. Clinical response at test of cure was assessed. Results Against 77 AmpC-overproducing Enterobacterales isolates, meropenem-vaborbactam (MVB) (98.7% susceptible [S]), CAZ-AVI (96.1% S), and meropenem (MEM) (96.1% S) had similar in vitro activity (Table), with greater in vitro activity than amikacin (AMK) (84.4% S), gentamicin (61.0% S), and ceftolozane-tazobactam (TZC) (35.1% S). Clinical cures in patients with baseline AmpC-overproducing Enterobacterales were 21/26 (81%) in CAZ-AVI group vs 17/20 (85%) in control groups. Against 53 AmpC-overproducing P. aeruginosa isolates, CAZ-AVI (73.6% S) showed greater in vitro activity than AMK (69.8% S), TZC (58.5% S), and MEM (37.7% S). Clinical cures in patients with baseline AmpC-overproducing P. aeruginosa were 12/14 (86%) in CAZ-AVI group vs 9/12 (75%) in control groups. MIC distributions against the same P aeruginosa isolates were CAZ-AVI (MIC50/90, 4/ >64 µg/mL), MVB (MIC50/90, 8/32 µg/mL), and MEM (MIC50/90, 8/32 µg/mL). Table Conclusion CAZ-AVI was the most active agent against AmpC-overproducing P. aeruginosa with higher proportion of clinical cure than controls. CAZ-AVI was also among the most active agents against AmpC-overproducing Enterobacterales, with >96% isolates susceptible. Disclosures Lynn-Yao Lin, MS, AbbVie (Employee) Dmitri Debabov, PhD, AbbVie (Employee) William Chang, BS, AbbVie (Employee) Urania Rappo, MD, MS, PharmD, Allergan (before its acquisition by AbbVie) (Employee)


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S655-S655
Author(s):  
Daniel Navas ◽  
Angela Charles ◽  
Amy Carr ◽  
Jose Alexander

Abstract Background The activity of imipenem/relebactam (I/R), ceftazidime/avibactam (CZA) and cefiderocol (FDC) were evaluated against clinical isolates of multidrug resistant (MDR) strains of P. aeruginosa which was resistant to ceftolozane/tazobactam (C/T). The recent increase of MDR P. aeruginosa strains isolated from clinical samples has prompted research and development of new antimicrobials that can withstand its multiple resistance mechanisms. C/T is an effective option for treatment of MDR P. aeruginosa in our facility with only 10% of resistance in MDR strains, but the emergence of resistance may occur due to the presence of a carbapenemase gene or an ampC mutation. Methods Antimicrobial susceptibility testing for C/T Etest® (bioMérieux, Inc.) were performed on all MDR strains initially screened by the VITEK2® (bioMérieux, Inc.). 10% (n=20) of all MDR isolates were resistant to C/T by the CLSI 2019 breakpoints. These resistant isolates were tested for presence of a carbapenemase gene using the GeneXpert CARBA-R (Cepheid®) PCR and against CZA Etest® (bioMérieux, Inc.) I/R gradient strips (Liofilchem®) and FDC broth microdilution (Thermo Scientific™ Sensititre™). Results A total of 20 clinical isolates of MDR P. aeruginosa resistant to C/T were tested following standardized CLSI protocols and techniques. All 20 isolates were screened for the presence of a carbapenemase gene (blaVIM, blaNDM, blaKPC, blaOXA-48, blaIMP). A blaVIM gene was detected in 6 (30%) out of 20 isolates. FDC demonstrated the greatest activity with 85% (n=17) of susceptible isolates (CLSI MIC <4µg/dL). CZA (CLSI MIC <8µg/dL) and I/R (FDA MIC <2µg/dL) showed 15% (n=3) and 10% (n=2) of susceptible isolates respectively. FDC was active against all 6 blaVIM isolates, where all 6 strains were resistant to CZA and I/R as expected. 3 isolates tested non-susceptible against FDC; additional characterization was not performed at this time. Conclusion Based on these results, FDC demonstrated the greatest in-vitro activity against C/T resistant strains of MDR P. aeruginosa. FDC also demonstrated activity against all 6 MDR P. aeruginosa carrying blaVIM gene. FDC is a strong option to consider on MDR P. aeruginosa strains based on a resistance testing algorithm and a cost/effective protocol. Disclosures All Authors: No reported disclosures


Mycoses ◽  
2021 ◽  
Author(s):  
Hamid Badali ◽  
Connie Cañete‐Gibas ◽  
Hoja Patterson ◽  
Carmita Sanders ◽  
Barbara Mermella ◽  
...  

2001 ◽  
Vol 45 (6) ◽  
pp. 1919-1922 ◽  
Author(s):  
Arthur L. Barry ◽  
Peter C. Fuchs ◽  
Steven D. Brown

ABSTRACT The in vitro activity of daptomycin is affected by the concentration of calcium cations in the test medium. Mueller-Hinton broth is currently adjusted to contain 10 to 12.5 mg of magnesium per liter and 20 to 25 mg of calcium per liter, but for testing of daptomycin, greater concentrations of calcium (50 mg/liter) are recommended to better resemble the normal concentration of ionized calcium in human serum. Two levels of calcium were used for broth microdilution tests of 2,789 recent clinical isolates of gram-positive bacterial pathogens. MICs of daptomycin were two- to fourfold lower when the broth contained additional calcium. For most species, however, the percentages of strains that were inhibited by 2.0 μg of daptomycin per ml were essentially identical with the two broth media. Enterococci were the important exception; i.e., 92% were inhibited when tested in calcium-supplemented broth but only 35% were inhibited by 2.0 μg/ml without the additional calcium. This type of information should be considered when selecting criteria for defining in vitro susceptibility to daptomycin.


2001 ◽  
Vol 39 (11) ◽  
pp. 4208-4209 ◽  
Author(s):  
F. Barchiesi ◽  
D. Arzeni ◽  
V. Camiletti ◽  
O. Simonetti ◽  
A. Cellini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document