scholarly journals THE PRESENCE OF WEAK ACTIVE GALACTIC NUCLEI IN HIGH REDSHIFT STAR-FORMING GALAXIES

2010 ◽  
Vol 711 (2) ◽  
pp. 1291-1296 ◽  
Author(s):  
Shelley A. Wright ◽  
James E. Larkin ◽  
James R. Graham ◽  
Chung-Pei Ma
2019 ◽  
Vol 15 (S352) ◽  
pp. 121-122
Author(s):  
A. Plat ◽  
S. Charlot ◽  
G. Bruzual ◽  
A. Feltre ◽  
A. Vidal-Garca ◽  
...  

AbstractTo understand how the nature of the ionizing sources and the leakage of ionizing photons in high-redshift galaxies can be constrained from their emission-line spectra, we compare emission-line models of star-forming galaxies including leakage of ionizing radiation, active galactic nuclei (AGN) and radiative shocks, with observations of galaxies at various redshifts with properties expected to approach those of primeval galaxies.


2013 ◽  
Vol 763 (2) ◽  
pp. 123 ◽  
Author(s):  
Allison Kirkpatrick ◽  
Alexandra Pope ◽  
Vassilis Charmandaris ◽  
Emmanuele Daddi ◽  
David Elbaz ◽  
...  

2016 ◽  
Vol 833 (2) ◽  
pp. 152 ◽  
Author(s):  
C. Mancuso ◽  
A. Lapi ◽  
J. Shi ◽  
Z.-Y. Cai ◽  
J. Gonzalez-Nuevo ◽  
...  

2020 ◽  
Vol 638 ◽  
pp. A113 ◽  
Author(s):  
H. Chen ◽  
M. A. Garrett ◽  
S. Chi ◽  
A. P. Thomson ◽  
P. D. Barthel ◽  
...  

Aims. Submillimetre-selected galaxies (SMGs) at high redshift (z ∼ 2) are potential host galaxies of active galactic nuclei (AGN). If the local Universe is a good guide, ∼50% of the obscured AGN amongst the SMG population could be missed even in the deepest X-ray surveys. Radio observations are insensitive to obscuration; therefore, very long baseline interferometry (VLBI) can be used as a tool to identify AGN in obscured systems. A well-established upper limit to the brightness temperature of 105 K exists in star-forming systems, thus VLBI observations can distinguish AGN from star-forming systems via brightness temperature measurements. Methods. We present 1.6 GHz European VLBI Network (EVN) observations of four SMGs (with measured redshifts) to search for evidence of compact radio components associated with AGN cores. For two of the sources, e-MERLIN images are also presented. Results. Out of the four SMGs observed, we detect one source, J123555.14, that has an integrated EVN flux density of 201 ± 15.2 μJy, corresponding to a brightness temperature of 5.2 ± 0.7 × 105 K. We therefore identify that the radio emission from J123555.14 is associated with an AGN. We do not detect compact radio emission from a possible AGN in the remaining sources (J123600.10, J131225.73, and J163650.43). In the case of J131225.73, this is particularly surprising, and the data suggest that this may be an extended, jet-dominated AGN that is resolved by VLBI. Since the morphology of the faint radio source population is still largely unknown at these scales, it is possible that with a ∼10 mas resolution, VLBI misses (or resolves) many radio AGN extended on kiloparsec scales.


2020 ◽  
Vol 499 (4) ◽  
pp. 5749-5764 ◽  
Author(s):  
Xihan Ji ◽  
Renbin Yan

ABSTRACT Optical diagnostic diagrams are powerful tools to separate different ionizing sources in galaxies. However, the model-constraining power of the most widely used diagrams is very limited and challenging to visualize. In addition, there have always been classification inconsistencies between diagrams based on different line ratios, and ambiguities between regions purely ionized by active galactic nuclei (AGNs) and composite regions. We present a simple reprojection of the 3D line ratio space composed of [N ii]λ6583/H α, [S ii]λλ6716, 6731/H α, and [O iii]λ5007/H β, which reveals its model-constraining power and removes the ambiguity for the true composite objects. It highlights the discrepancy between many theoretical models and the data loci. With this reprojection, we can put strong constraints on the photoionization models and the secondary nitrogen abundance prescription. We find that a single nitrogen prescription cannot fit both the star-forming locus and AGN locus simultaneously, with the latter requiring higher N/O ratios. The true composite regions stand separately from both models. We can compute the fractional AGN contributions for the composite regions, and define demarcations with specific upper limits on contamination from AGN or star formation. When the discrepancy about nitrogen prescriptions gets resolved in the future, it would also be possible to make robust metallicity measurements for composite regions and AGNs.


2020 ◽  
Vol 15 (S359) ◽  
pp. 347-349
Author(s):  
Carpes P. Hekatelyne ◽  
Thaisa Storchi-Bergmann

AbstractWe present Multi-Object Spectrograph (GMOS) Integral Field Unit (IFU), Hubble Space Telescope (HST) and Very Large Array (VLA) observations of the inner kpc of the OH Megamaser galaxy IRAS 11506-3851. In this work we discuss the kinematics and excitation of the gas as well as its radio emission. The HST images reveal an isolated spiral galaxy and the combination with the GMOS-IFU flux distributions allowed us to identify a partial ring of star-forming regions surrounding the nucleus with a radius of ≍500 pc. The emission-line ratios and excitation map reveal that the region inside the ring present mixed/transition excitation between those of Starbursts and Active Galactic Nuclei (AGN), while regions along the ring are excited by Starbursts. We suggest that we are probing a buried or fading AGN that could be both exciting the gas and originating an outflow.


2013 ◽  
Vol 430 (3) ◽  
pp. 2002-2017 ◽  
Author(s):  
R. Riffel ◽  
A. Rodríguez-Ardila ◽  
I. Aleman ◽  
M. S. Brotherton ◽  
M. G. Pastoriza ◽  
...  

2004 ◽  
Vol 128 (5) ◽  
pp. 2048-2065 ◽  
Author(s):  
F. E. Bauer ◽  
D. M. Alexander ◽  
W. N. Brandt ◽  
D. P. Schneider ◽  
E. Treister ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document