high redshift galaxies
Recently Published Documents


TOTAL DOCUMENTS

474
(FIVE YEARS 80)

H-INDEX

63
(FIVE YEARS 9)

2021 ◽  
Vol 923 (1) ◽  
pp. 8
Author(s):  
Charles L. Steinhardt ◽  
Christian Kragh Jespersen ◽  
Nora B. Linzer

Abstract One of the primary goals for the upcoming James Webb Space Telescope is to observe the first galaxies. Predictions for planned and proposed surveys have typically focused on average galaxy counts, assuming a random distribution of galaxies across the observed field. The first and most-massive galaxies, however, are expected to be tightly clustered, an effect known as cosmic variance. We show that cosmic variance is likely to be the dominant contribution to uncertainty for high-redshift mass and luminosity functions, and that median high-redshift and high-mass galaxy counts for planned observations lie significantly below average counts. Several different strategies are considered for improving our understanding of the first galaxies, including adding depth, area, and independent pointings. Adding independent pointings is shown to be the most efficient both for discovering the single highest-redshift galaxy and also for constraining mass and luminosity functions.


2021 ◽  
Vol 921 (2) ◽  
pp. 130
Author(s):  
Skarleth M. Motiño Flores ◽  
Tommy Wiklind ◽  
Rafael T. Eufrasio

Abstract Star-forming dwarf galaxies have properties similar to those expected in high-redshift galaxies. Hence, these local galaxies may provide insights into the evolution of the first galaxies and the physical processes at work. We present a sample of 11 potential local analogs to high-z (LAHz) galaxies. The sample consists of blue compact dwarf galaxies, selected to have spectral energy distributions that fit galaxies at 1.5 < z < 4. We use SOFIA-HAWC+ observations combined with optical and near-infrared data to characterize the dust properties, star formation rate (SFR), and star formation histories (SFHs) of the sample of LAHz galaxies. We employ Bayesian analysis to characterize the dust using two-component blackbody models. Using the Lightning package, we fit the spectral energy distribution of the LAHz galaxies over the far-UV−far-infrared wavelength range and derive the SFH in five time steps up to a look-back time of 13.3 Gyr. Of the 11 LAHz candidates, six galaxies have SFH consistent with no star formation activity at look-back times beyond 1 Gyr. The remaining galaxies show residual levels of star formation at ages ≳1 Gyr, making them less suitable as local analogs. The six young galaxies stand out in our sample by having the lowest gas-phase metallicities. They are characterized by warmer dust, having the highest specific SFR and the highest gas mass fractions. The young age of these six galaxies suggests that merging is less important as a driver of the star formation activity. The six LAHz candidates are promising candidates for studies of the gasdynamics role in driving star formation.


2021 ◽  
Vol 922 (1) ◽  
pp. 12
Author(s):  
Jessie Hirtenstein ◽  
Tucker Jones ◽  
Ryan L. Sanders ◽  
Crystal L. Martin ◽  
M. C. Cooper ◽  
...  

Abstract We present spatially resolved Hubble Space Telescope grism spectroscopy of 15 galaxies at z ∼ 0.8 drawn from the DEEP2 survey. We analyze Hα+[N ii], [S ii], and [S iii] emission on kiloparsec scales to explore which mechanisms are powering emission lines at high redshifts, testing which processes may be responsible for the well-known offset of high-redshift galaxies from the z ∼ 0 locus in the [O iii]/Hβ versus [N ii]/Hα Baldwin—Phillips—Terlevich (BPT) excitation diagram. We study spatially resolved emission-line maps to examine evidence for active galactic nuclei (AGN), shocks, diffuse ionized gas (DIG), or escaping ionizing radiation, all of which may contribute to the BPT offsets observed in our sample. We do not find significant evidence of AGN in our sample and quantify that, on average, AGN would need to contribute ∼25% of the Hα flux in the central resolution element in order to cause the observed BPT offsets. We find weak (2σ) evidence of DIG emission at low surface brightnesses, yielding an implied total DIG emission fraction of ∼20%, which is not significant enough to be the dominant emission line driver in our sample. In general we find that the observed emission is dominated by star-forming H ii regions. We discuss trends with demographic properties and the possible role of α-enhanced abundance patterns in the emission spectra of high-redshift galaxies. Our results indicate that photoionization modeling with stellar population synthesis inputs is a valid tool to explore the specific star formation properties which may cause BPT offsets, to be explored in future work.


2021 ◽  
Vol 916 (1) ◽  
pp. 4
Author(s):  
C. Tohill ◽  
L. Ferreira ◽  
C. J. Conselice ◽  
S. P. Bamford ◽  
F. Ferrari

2021 ◽  
Vol 910 (2) ◽  
pp. 89
Author(s):  
Anne D. Burnham ◽  
Caitlin M. Casey ◽  
Jorge A. Zavala ◽  
Sinclaire M. Manning ◽  
Justin S. Spilker ◽  
...  

2021 ◽  
Vol 503 (1) ◽  
pp. 1206-1213
Author(s):  
Takashi J Moriya ◽  
Ke-Jung Chen ◽  
Kimihiko Nakajima ◽  
Nozomu Tominaga ◽  
Sergei I Blinnikov

ABSTRACT We present the expected observational properties of a general relativistic instability supernova (GRSN) from the 55 500 M⊙ primordial (Population III) star. Supermassive stars exceeding $10^4\, \mathrm{M}_\odot$ may exist in the early Universe. They are generally considered to collapse through the general relativistic instability to be seed black holes to form supermassive ($\sim 10^9\, \mathrm{M}_\odot$) black holes observed as high-redshift quasars. Some of them, however, may explode as GRSNe if the explosive helium burning unbinds the supermassive stars following the collapse triggered by the general relativistic instability. We perform the radiation hydrodynamics simulation of the GRSN starting shortly before the shock breakout. We find that the GRSN is characterized by a long-lasting (550 d) luminous ($1.5\times 10^{44}\, \mathrm{erg\, s^{-1}}$) plateau phase with the photospheric temperature of around 5000 K in the rest frame. The plateau phase lasts for decades when it appears at high redshifts and it will likely be observed as a persistent source in the future deep near-infrared imaging surveys. Especially, the near-infrared images reaching 29 AB magnitude that can be obtained by Galaxy and Reionization EXplorer (G-REX) and James Webb Space Telescope (JWST) allow us to identify GRSNe up to z ≃ 15. Deeper images enable us to discover GRSNe at even higher redshifts. Having extremely red colour, they can be distinguished from other persistent sources such as high-redshift galaxies by using colour information. We conclude that the deep near-infrared images are able to constrain the existence of GRSNe from the primordial supermassive stars in the Universe even without the time domain information.


2021 ◽  
Vol 909 (1) ◽  
pp. 56
Author(s):  
Daizhong Liu ◽  
Emanuele Daddi ◽  
Eva Schinnerer ◽  
Toshiki Saito ◽  
Adam Leroy ◽  
...  

2021 ◽  
Vol 908 (2) ◽  
pp. 121
Author(s):  
Debra Meloy Elmegreen ◽  
Bruce G. Elmegreen ◽  
Bradley C. Whitmore ◽  
Rupali Chandar ◽  
Daniela Calzetti ◽  
...  

Author(s):  
Baptiste Faure ◽  
Frédéric Bournaud ◽  
Jérémy Fensch ◽  
Emanuele Daddi ◽  
Manuel Behrendt ◽  
...  

Abstract High-redshift star-forming galaxies have very different morphologies compared to nearby ones. Indeed, they are often dominated by bright star-forming structures of masses up to 108 − 9 M⊙ dubbed «giant clumps». However, recent observations questioned this result by showing only low-mass structures or no structure at all. We use Adaptative Mesh Refinement hydrodynamical simulations of galaxies with parsec-scale resolution to study the formation of structures inside clumpy high-redshift galaxies. We show that in very gas-rich galaxies star formation occurs in small gas clusters with masses below 107 − 8 M⊙ that are themselves located inside giant complexes with masses up to 108 and sometimes 109 M⊙ . Those massive structures are similar in mass and size to the giant clumps observed in imaging surveys, in particular with the Hubble Space Telescope. Using mock observations of simulated galaxies, we show that at very high resolution with instruments like the Atacama Large Millimeter Array or through gravitational lensing, only low-mass structures are likely to be detected, and their gathering into giant complexes might be missed. This leads to the non-detection of the giant clumps and therefore introduces a bias in the detection of these structures. We show that the simulated giant clumps can be gravitationally bound even when undetected in mocks representative for ALMA observations and HST observations of lensed galaxies. We then compare the top-down fragmentation of an initially warm disc and the bottom-up fragmentation of an initially cold disc to show that the process of formation of the clumps does not impact their physical properties.


Author(s):  
Piyush Sharda ◽  
Mark R Krumholz ◽  
Emily Wisnioski ◽  
John C Forbes ◽  
Christoph Federrath ◽  
...  

Abstract We present a new model for the evolution of gas phase metallicity gradients in galaxies from first principles. We show that metallicity gradients depend on four ratios that collectively describe the metal equilibration timescale, production, transport, consumption, and loss. Our model finds that most galaxy metallicity gradients are in equilibrium at all redshifts. When normalized by metal diffusion, metallicity gradients are governed by the competition between radial advection, metal production, and accretion of metal-poor gas from the cosmic web. The model naturally explains the varying gradients measured in local spirals, local dwarfs, and high-redshift star-forming galaxies. We use the model to study the cosmic evolution of gradients across redshift, showing that the gradient in Milky Way-like galaxies has steepened over time, in good agreement with both observations and simulations. We also predict the evolution of metallicity gradients with redshift in galaxy samples constructed using both matched stellar masses and matched abundances. Our model shows that massive galaxies transition from the advection-dominated to the accretion-dominated regime from high to low redshifts, which mirrors the transition from gravity-driven to star formation feedback-driven turbulence. Lastly, we show that gradients in local ultraluminous infrared galaxies (major mergers) and inverted gradients seen both in the local and high-redshift galaxies may not be in equilibrium. In subsequent papers in this series, we show that the model also explains the observed relationship between galaxy mass and metallicity gradients, and between metallicity gradients and galaxy kinematics.


Sign in / Sign up

Export Citation Format

Share Document