hubble space telescope
Recently Published Documents


TOTAL DOCUMENTS

2132
(FIVE YEARS 349)

H-INDEX

97
(FIVE YEARS 14)

2022 ◽  
Author(s):  
Karan R. Takkhi

Abstract The comparison of redshift-distance relationship for high and low-redshift supernovae revealed the surprising transition of the Universe’s expansion from deceleration to acceleration. As compared to local supernovae, remote supernovae appear 10% to 25% dimmer as they are further away than expected. The expansion rate obtained for local supernovae is higher with low redshifts as compared to the expansion rate obtained for remote supernovae with high redshifts. Since observed redshifts in an expanding Universe provide an estimate of recession velocities, therefore, it is very disturbing to find that low recession velocities (just 1% of speed of light) indicate a faster rate of expansion (acceleration), whereas high recession velocities (60% of speed of light) indicate a slower rate of expansion (deceleration). In this paper, I unravel an undiscovered aspect that perfectly mimics cosmic acceleration. Rather than “cosmic deceleration that preceded the current epoch of cosmic acceleration”, I show in this paper, that “consecutive expansion epochs of the Universe that preceded the current epoch of cosmic expansion” were responsible for placing remote supernovae further away than expected. As a consequence of consecutive expansion, expansion began for remote structures in preceding expansion epochs before it did for local structures in the current (or more recent) expansion epoch; remote supernovae, quasars, and gamma-ray bursts are therefore not only further away than expected, but they also happen to yield a slower rate of expansion, thereby suggesting their deceleration even with “superluminal expansion”. As a result of consecutive expansion, preceding expansion epochs appear to be decelerating as compared to the expansion epoch that succeeds them. The analysis is based on the redshift-distance relationship plotted for 580 type Ia supernovae from the Supernova Cosmology Project, 7 additional high-redshift type Ia supernovae discovered through the Advanced Camera for Surveys on the Hubble Space Telescope from the Great Observatories Origins Deep Survey Treasury program, and 1 additional very high-redshift type Ia supernova discovered with Wide Field and Planetary Camera 2 on the Hubble Space Telescope. The results obtained by the High-Z Supernova Search Team through observations of type Ia supernovae have also been analysed. Studies incorporating quasars and gamma-ray bursts to determine how the expansion of the Universe has changed over time have been taken into consideration as well. The results obtained in this paper have been confirmed by plotting velocity-distance relationship, expansion rate vs. time relationship, expansion factor vs. time relationship, scale factor vs. time relationship, scale factor vs. distance relationship, distance-redshift relationship, and distance modulus vs. redshift relationship, moreover, the deceleration parameter (q0) is also found to be negative (q0 < 0).


2022 ◽  
Vol 924 (2) ◽  
pp. 50
Author(s):  
John Bally ◽  
Zen Chia ◽  
Adam Ginsburg ◽  
Bo Reipurth ◽  
Kei E. I Tanaka ◽  
...  

Abstract Multi-epoch narrowband Hubble Space Telescope images of the bipolar H ii region Sh2-106 reveal highly supersonic nebular proper motions that increase with projected distance from the massive young stellar object S106 IR, reaching over ∼30 mas yr−1 (∼150 km s−1 at D = 1.09 kpc) at a projected separation of ∼1.′4 (0.44 pc) from S106 IR. We propose that S106 IR experienced a ∼1047 erg explosion ∼3500 yr ago. The explosion may be the result of a major accretion burst or a recent encounter with another star, or a consequence of the interaction of a companion with the bloated photosphere of S106 IR as it grew from ∼10 through ∼15 M ⊙ at a high accretion rate. Near-IR images reveal fingers of H2 emission pointing away from S106 IR and an asymmetric photon-dominated region surrounding the ionized nebula. Radio continuum and Brγ emission reveal a C-shaped bend in the plasma, indicating either the motion of S106 IR toward the east, or the deflection of plasma toward the west by the surrounding cloud. The H ii region bends around a ∼1′ diameter dark bay west of S106 IR that may be shielded from direct illumination by a dense molecular clump. Herbig–Haro and Molecular Hydrogen Objects tracing outflows powered by stars in the Sh2-106 protocluster such as the Class 0 source S106 FIR are discussed.


2022 ◽  
Vol 924 (2) ◽  
pp. 86
Author(s):  
Zhijie Qu ◽  
Ryan Lindley ◽  
Joel N. Bregman

Abstract We compose a 265-sight-line Milky Way C iv line-shape sample using the Hubble Space Telescope/Cosmic Origins Spectrograph archive, which is complementary to the existing Si iv samples. C iv has a higher ionization potential (47–64 eV) than Si iv (33–45 eV), so it also traces warm gas, which is roughly cospatial with Si iv. The spatial density distribution and kinematics of C iv are identical to those Si iv within ≈2σ. C iv is more sensitive to the warm gas density distribution at large radii with a higher element abundance. Applying the kinematical model to the C iv sample, we find two possible solutions of the density distribution, which are distinguished by the relative extension along the disk midplane and the normal-line direction. Both solutions can reproduce the existing sample and suggest a warm gas disk mass of log M ( M ⊙ ) ≈ 8 and an upper limit of log M ( M ⊙ ) < 9.3 within 250 kpc, which is consistent with Si iv. There is a decrease in the C iv/Si iv column density ratio from the Galactic center to the outskirts by 0.2–0.3 dex, which may suggest a phase transition or different ionization mechanisms for C iv and Si iv. Also, we find that the difference between C iv and Si iv is an excellent tracer of small-scale features, and we find a typical size of 5°–10° for possible turbulence within individual clouds (≈1 kpc).


2022 ◽  
Vol 258 (1) ◽  
pp. 10
Author(s):  
Janice C. Lee ◽  
Bradley C. Whitmore ◽  
David A. Thilker ◽  
Sinan Deger ◽  
Kirsten L. Larson ◽  
...  

Abstract The PHANGS program is building the first data set to enable the multiphase, multiscale study of star formation across the nearby spiral galaxy population. This effort is enabled by large survey programs with the Atacama Large Millimeter/submillimeter Array (ALMA), MUSE on the Very Large Telescope, and the Hubble Space Telescope (HST), with which we have obtained CO(2–1) imaging, optical spectroscopic mapping, and high-resolution UV–optical imaging, respectively. Here, we present PHANGS-HST, which has obtained NUV–U–B–V–I imaging of the disks of 38 spiral galaxies at distances of 4–23 Mpc, and parallel V- and I-band imaging of their halos, to provide a census of tens of thousands of compact star clusters and multiscale stellar associations. The combination of HST, ALMA, and VLT/MUSE observations will yield an unprecedented joint catalog of the observed and physical properties of ∼100,000 star clusters, associations, H ii regions, and molecular clouds. With these basic units of star formation, PHANGS will systematically chart the evolutionary cycling between gas and stars across a diversity of galactic environments found in nearby galaxies. We discuss the design of the PHANGS-HST survey and provide an overview of the HST data processing pipeline and first results. We highlight new methods for selecting star cluster candidates, morphological classification of candidates with convolutional neural networks, and identification of stellar associations over a range of physical scales with a watershed algorithm. We describe the cross-observatory imaging, catalogs, and software products to be released. The PHANGS high-level science products will seed a broad range of investigations, in particular, the study of embedded stellar populations and dust with the James Webb Space Telescope, for which a PHANGS Cycle 1 Treasury program to obtain eight-band 2–21 μm imaging has been approved.


2022 ◽  
Vol 924 (2) ◽  
pp. 87
Author(s):  
J. Christopher Mihos ◽  
Patrick R. Durrell ◽  
Elisa Toloba ◽  
Patrick Côté ◽  
Laura Ferrarese ◽  
...  

Abstract We use deep Hubble Space Telescope imaging to derive a distance to the Virgo Cluster ultradiffuse galaxy (UDG) VCC 615 using the tip of the red giant branch (TRGB) distance estimator. We detect 5023 stars within the galaxy, down to a 50% completeness limit of F814W ≈ 28.0, using counts in the surrounding field to correct for contamination due to background sources and Virgo intracluster stars. We derive an extinction-corrected F814W tip magnitude of m tip , 0 = 27.19 − 0.05 + 0.07 , yielding a distance of d = 17.7 − 0.4 + 0.6 Mpc. This places VCC 615 on the far side of the Virgo Cluster (d Virgo = 16.5 Mpc), at a Virgocentric distance of 1.3 Mpc and near the virial radius of the main body of Virgo. Coupling this distance with the galaxy’s observed radial velocity, we find that VCC 615 is on an outbound trajectory, having survived a recent passage through the inner parts of the cluster. Indeed, our orbit modeling gives a 50% chance the galaxy passed inside the Virgo core (r < 620 kpc) within the past gigayear, although very close passages directly through the cluster center (r < 200 kpc) are unlikely. Given VCC 615's undisturbed morphology, we argue that the galaxy has experienced no recent and sudden transformation into a UDG due to the cluster potential, but rather is a long-lived UDG whose relatively wide orbit and large dynamical mass protect it from stripping and destruction by the Virgo cluster tides. Finally, we also describe the serendipitous discovery of a nearby Virgo dwarf galaxy projected 90″ (7.2 kpc) away from VCC 615.


2022 ◽  
Vol 924 (1) ◽  
pp. 14
Author(s):  
Laura J. Prichard ◽  
Marc Rafelski ◽  
Jeff Cooke ◽  
Uros Meštrić ◽  
Robert Bassett ◽  
...  

Abstract Star-forming galaxies are the sources likely to have reionized the universe. As we cannot observe them directly due to the opacity of the intergalactic medium at z ≳ 5, we study z ∼ 3–5 galaxies as proxies to place observational constraints on cosmic reionization. Using new deep Hubble Space Telescope rest-frame UV F336W and F435W imaging (30 orbits, ∼40 arcmin2, ∼29–30 mag depth at 5σ), we attempt to identify a sample of Lyman continuum galaxies (LCGs). These are individual sources that emit ionizing flux below the Lyman break (<912 Å). This population would allow us to constrain cosmic reionization parameters such as the number density and escape fraction (f esc) of ionizing sources. We compile a comprehensive parent sample that does not rely on the Lyman-break technique for redshifts. We present three new spectroscopic candidates at z ∼ 3.7–4.4 and 32 new photometric candidates. The high-resolution multiband HST imaging and new Keck/Low Resolution Imaging Spectrometer (LRIS) redshifts make these promising spectroscopic LCG candidates. Using both a traditional and a probabilistic approach, we find that the most likely f esc values for the three spectroscopic LCG candidates are >100% and therefore not physical. We are unable to confirm the true nature of these sources with the best available imaging and direct blue Keck/LRIS spectroscopy. More spectra, especially from the new class of 30 m telescopes, will be required to build a statistical sample of LCGs to place firm observational constraints on cosmic reionization.


2021 ◽  
Vol 924 (1) ◽  
pp. L2
Author(s):  
Mario Cadelano ◽  
Emanuele Dalessandro ◽  
Maurizio Salaris ◽  
Nate Bastian ◽  
Alessio Mucciarelli ◽  
...  

Abstract We present the result of a detailed analysis of Hubble Space Telescope UV and optical deep images of the massive and young (∼1.5 Gyr) stellar cluster NGC 1783 in the Large Magellanic Cloud. This system does not show evidence of multiple populations (MPs) along the red giant branch (RGB) stars. However, we find that the cluster main sequence (MS) shows evidence of a significant broadening (50% larger than what is expected from photometric errors) along with hints of possible bimodality in the MP sensitive (m F343N − m F438W, m F438W) color–magnitude diagram (CMD). Such an effect is observed in all color combinations including the m F343N filter, while it is not found in the optical CMDs. This observational evidence suggests we might have found light-element chemical abundance variations along the MS of NGC 1783, which represents the first detection of MPs in a system younger than 2 Gyr. A comparison with isochrones including MP-like abundances shows that the observed broadening is compatible with a N abundance enhancement of Δ([N/Fe]) ∼ 0.3. Our analysis also confirms previous results about the lack of MPs along the cluster RGB. However, we find that the apparent disagreement between the results found on the MS and the RGB is compatible with the mixing effects linked to the first dredge up. This study provides new key information about the MP phenomenon and suggests that star clusters form in a similar way at any cosmic age.


2021 ◽  
Vol 163 (1) ◽  
pp. 34
Author(s):  
Philip S. Muirhead ◽  
Jason Nordhaus ◽  
Maria R. Drout

Abstract V471 Tau is a post-common-envelope binary consisting of an eclipsing DA white dwarf and a K-type main-sequence star in the Hyades star cluster. We analyzed publicly available photometry and spectroscopy of V471 Tau to revise the stellar and orbital parameters of the system. We used archival K2 photometry, archival Hubble Space Telescope spectroscopy, and published radial-velocity measurements of the K-type star. Employing Gaussian processes to fit for rotational modulation of the system flux by the main-sequence star, we recovered the transits of the white dwarf in front of the main-sequence star for the first time. The transits are shallower than would be expected from purely geometric occultations owing to gravitational microlensing during transit, which places an additional constraint on the white-dwarf mass. Our revised mass and radius for the main-sequence star is consistent with single-star evolutionary models given the age and metallicity of the Hyades. However, as noted previously in the literature, the white dwarf is too massive and too hot to be the result of single-star evolution given the age of the Hyades, and may be the product of a merger scenario. We independently estimate the conditions of the system at the time of common envelope that would result in the measured orbital parameters today.


2021 ◽  
Vol 163 (1) ◽  
pp. 17
Author(s):  
Yifan Zhou ◽  
Dániel Apai ◽  
Xianyu Tan ◽  
Joshua D. Lothringer ◽  
Ben W. P. Lew ◽  
...  

Abstract Brown dwarfs in close-in orbits around white dwarfs offer an excellent opportunity to investigate properties of fast-rotating, tidally locked, and highly irradiated atmospheres. We present Hubble Space Telescope Wide Field Camera 3 G141 phase-resolved observations of two brown-dwarf-white-dwarf binaries: WD 0137-349 and EPIC 212235321. Their 1.1–1.7 μm phase curves demonstrate rotational modulations with semi-amplitudes of 5.27% ± 0.02% and 29.1% ± 0.1%; both can be fit well by multi-order Fourier series models. The high-order Fourier components have the same phase as the first-order and are likely caused by hot spots located at the substellar points, suggesting inefficient day/night heat transfer. Both brown dwarfs’ phase-resolved spectra can be accurately represented by linear combinations of their respective day- and nightside spectra. Fitting the irradiated brown dwarf model grids to the dayside spectra require a filling factor of ∼50%, further supporting a hot spot dominating the dayside emission. The nightside spectrum of WD 0137-349B is fit reasonably well by non-irradiated substellar models, and the one of EPIC 21223521B can be approximated by a Planck function. We find strong spectral variations in the brown dwarfs’ day/night flux and brightness temperature contrasts, highlighting the limitations of band-integrated measurements in probing heat transfer in irradiated objects. On the color–magnitude diagram, WD 0137-349B evolves along a cloudless model track connecting the early-L and mid-T spectral types, suggesting that clouds and disequilibrium chemistry have a negligible effect on this object. A full interpretation of these high-quality phase-resolved spectra calls for new models that couple atmospheric circulation and radiative transfer under high-irradiation conditions.


2021 ◽  
Vol 163 (1) ◽  
pp. 7
Author(s):  
Trevor O. Foote ◽  
Nikole K. Lewis ◽  
Brian M. Kilpatrick ◽  
Jayesh M. Goyal ◽  
Giovanni Bruno ◽  
...  

Abstract Here we present a thermal emission spectrum of WASP-79b, obtained via Hubble Space Telescope Wide Field Camera 3 G141 observations as part of the PanCET program. As we did not observe the ingress or egress of WASP-79b’s secondary eclipse, we consider two scenarios: a fixed mid-eclipse time based on the expected occurrence time, and a mid-eclipse time as a free parameter. In both scenarios, we can measure thermal emission from WASP-79b from 1.1 to 1.7 μm at 2.4σ confidence consistent with a 1900 K brightness temperature for the planet. We combine our observations with Spitzer dayside photometry (3.6 and 4.5 μm) and compare these observations to a grid of atmospheric forward models that span a range of metallicities, carbon-to-oxygen ratios, and recirculation factors. Given the strength of the planetary emission and the precision of our measurements, we found a wide range of forward models to be consistent with our data. The best-match equilibrium model suggests that WASP-79b’s dayside has a solar metallicity and carbon-to-oxygen ratio, alongside a recirculation factor of 0.75. Models including significant H− opacity provide the best match to WASP-79b’s emission spectrum near 1.58 μm. However, models featuring high-temperature cloud species—formed via vigorous vertical mixing and low sedimentation efficiencies—with little day-to-night energy transport also match WASP-79b’s emission spectrum. Given the broad range of equilibrium chemistry, disequilibrium chemistry, and cloudy atmospheric models consistent with our observations of WASP-79b’s dayside emission, further observations will be necessary to constrain WASP-79b’s dayside atmospheric properties.


Sign in / Sign up

Export Citation Format

Share Document