scholarly journals THE SLOAN DIGITAL SKY SURVEY CO-ADD: CROSS-CORRELATION WEAK LENSING AND TOMOGRAPHY OF GALAXY CLUSTERS

2012 ◽  
Vol 748 (2) ◽  
pp. 128 ◽  
Author(s):  
Melanie Simet ◽  
Jeffrey M. Kubo ◽  
Scott Dodelson ◽  
James T. Annis ◽  
Jiangang Hao ◽  
...  
2017 ◽  
Vol 470 (3) ◽  
pp. 2566-2577 ◽  
Author(s):  
Kerstin Paech ◽  
Nico Hamaus ◽  
Ben Hoyle ◽  
Matteo Costanzi ◽  
Tommaso Giannantonio ◽  
...  

2021 ◽  
Vol 503 (3) ◽  
pp. 4309-4319
Author(s):  
Jong Chul Lee ◽  
Ho Seong Hwang ◽  
Hyunmi Song

ABSTRACT To study environmental effects on the circumgalactic medium (CGM), we use the samples of redMaPPer galaxy clusters, background quasars, and cluster galaxies from the Sloan Digital Sky Survey (SDSS). With ∼82 000 quasar spectra, we detect 197 Mg ii absorbers in and around the clusters. The detection rate per quasar is 2.7 ± 0.7 times higher inside the clusters than outside the clusters, indicating that Mg ii absorbers are relatively abundant in clusters. However, when considering the galaxy number density, the absorber-to-galaxy ratio is rather low inside the clusters. If we assume that Mg ii absorbers are mainly contributed by the CGM of massive star-forming galaxies, a typical halo size of cluster galaxies is smaller than that of field galaxies by 30 ± 10 per cent. This finding supports that galaxy haloes can be truncated by interaction with the host cluster.


2013 ◽  
Vol 9 (S304) ◽  
pp. 243-243
Author(s):  
Takamitsu Miyaji ◽  
M. Krumpe ◽  
A. Coil ◽  
H. Aceves ◽  
B. Husemann

AbstractWe present the results of our series of studies on correlation function and halo occupation distribution of AGNs utilizing data the ROSAT All-Sky Survey (RASS) and the Sloan Digital Sky Survey (SDSS) in the redshift range of 0.07<z<0.36. In order to improve the signal-to-noise ratio, we take cross-correlation approach, where cross-correlation functions (CCF) between AGNs and much more numerous AGNs are analyzed. The calculated CCFs are analyzed using the Halo Occupation Distribution (HOD) model, where the CCFs are divided into the term contributed by the AGN-galaxy pairs that reside in one dark matter halo (DMH), (the 1-halo term) and those from two different DMHs (the 2-halo term). The 2-halo term is the indicator of the bias parameter, which is a function of the typical mass of the DMHs in which AGNs reside. The combination of the 1-halo and 2-halo terms gives, not only the typical DMH mass, but also how the AGNs are distributed among the DMHs as a function of mass separately for those at the center of the DMHs and satellites. The main results are as follows: (1) the range of typical mass of the DMHs in various sub-samples of AGNs log (MDMH/h−1MΘ) ~ 12.4–13.4, (2) we found a dependence of the AGN bias parameter on the X-ray luminosity of AGNs, while the optical luminosity dependence is not significant probably due to smaller dynamic range in luminosity for the optically-selected sample, and (3) the growth of the number of AGNs per DMH (N (MDMH)) with MDMH is shallow, or even may be flat, contrary to that of the galaxy population in general, which grows with MDMH proportionally, suggesting a suppression of AGN triggering in denser environment. In order to investigate the origin of the X-ray luminosity dependence, we are also investigating the dependence of clustering on the black hole mass and the Eddington ratio, we also present the results of this investigation.


2011 ◽  
Vol 527 ◽  
pp. A126 ◽  
Author(s):  
F.-X. Pineau ◽  
C. Motch ◽  
F. Carrera ◽  
R. Della Ceca ◽  
S. Derrière ◽  
...  

2007 ◽  
Author(s):  
Erin S. Sheldon ◽  
David E. Johnston ◽  
Ryan Scranton ◽  
Ben P. Koester ◽  
Timothy A. McKay ◽  
...  

2014 ◽  
Vol 11 (S308) ◽  
pp. 530-537
Author(s):  
Nelson D. Padilla ◽  
Dante Paz ◽  
Marcelo Lares ◽  
Laura Ceccarelli ◽  
Diego Garcí a Lambas ◽  
...  

AbstractCosmic voids are becoming key players in testing the physics of our Universe. Here we concentrate on the abundances and the dynamics of voids as these are among the best candidates to provide information on cosmological parameters. Cai, Padilla & Li (2014) use the abundance of voids to tell apart Hu & Sawicki f(R) models from General Relativity. An interesting result is that even though, as expected, voids in the dark matter field are emptier in f(R) gravity due to the fifth force expelling away from the void centres, this result is reversed when haloes are used to find voids. The abundance of voids in this case becomes even lower in f(R) compared to GR for large voids. Still, the differences are significant and this provides a way to tell apart these models. The velocity field differences between f(R) and GR, on the other hand, are the same for halo voids and for dark matter voids. Paz et al. (2013), concentrate on the velocity profiles around voids. First they show the necessity of four parameters to describe the density profiles around voids given two distinct void populations, voids-in-voids and voids-in-clouds. This profile is used to predict peculiar velocities around voids, and the combination of the latter with void density profiles allows the construction of model void-galaxy cross-correlation functions with redshift space distortions. When these models are tuned to fit the measured correlation functions for voids and galaxies in the Sloan Digital Sky Survey, small voids are found to be of the void-in-cloud type, whereas larger ones are consistent with being void-in-void. This is a novel result that is obtained directly from redshift space data around voids. These profiles can be used to remove systematics on void-galaxy Alcock-Pacinsky tests coming from redshift-space distortions.


2009 ◽  
Vol 703 (2) ◽  
pp. 2232-2248 ◽  
Author(s):  
Erin S. Sheldon ◽  
David E. Johnston ◽  
Morad Masjedi ◽  
Timothy A. McKay ◽  
Michael R. Blanton ◽  
...  

2019 ◽  
Vol 629 ◽  
pp. A7
Author(s):  
Mikkel O. Lindholmer ◽  
Kevin A. Pimbblet

In this work we use the property that, on average, star formation rate increases with redshift for objects with the same mass – the so called galaxy main sequence – to measure the redshift of galaxy clusters. We use the fact that the general galaxy population forms both a quenched and a star-forming sequence, and we locate these ridges in the SFR–M⋆ plane with galaxies taken from the Sloan Digital Sky Survey in discrete redshift bins. We fitted the evolution of the galaxy main sequence with redshift using a new method and then subsequently apply our method to a suite of X-ray selected galaxy clusters in an attempt to create a new distance measurement to clusters based on their galaxy main sequence. We demonstrate that although it is possible in several galaxy clusters to measure the main sequences, the derived distance and redshift from our galaxy main sequence fitting technique has an accuracy of σz = ±0.017 ⋅ (z + 1) and is only accurate up to z ≈ 0.2.


Sign in / Sign up

Export Citation Format

Share Document