matter field
Recently Published Documents


TOTAL DOCUMENTS

273
(FIVE YEARS 82)

H-INDEX

18
(FIVE YEARS 3)

Author(s):  
Elham Nouri ◽  
Hossein Motavalli ◽  
Amin Rezaei Akbarieh

In this paper, a generalized tachyonic dark energy scenario is presented in the framework of a homogeneous and isotropic Friedmann–Lemaître–Robertson–Walker (FLRW) flat universe, in which a noncanonical scalar field is coupled to gravity nonminimally. By utilizing the Noether symmetry method, we found the explicit form of both potential density and coupling function, as a function of the scalar field. It is found that the tachyon field acts as the source of inflation and accelerates the evolution of the universe in the early times considerably. While, in the late times, gravitational sources are a pressureless matter field together with the tachyon field, which is the nature of dark energy and plays an essential role in the deceleration-acceleration phase transition of the universe. Further, the role of the coefficient function of tachyon potential, alongside the potential, is considered in the evolution of the universe. It is shown that this model involves a cosmological degeneracy in the sense that different coupling parameters and tachyonic potentials may be equivalent to the same cosmological standards such as the cosmic acceleration, age, equation of state and mean Hubble of the FLRW universe. The physical characteristics of the main cosmological observables are studied in detail, which suggests that the generalized tachyon field is a remarkable dark energy candidate.


Author(s):  
Alex Gough ◽  
Cora Uhlemann

The late universe contains a wealth of information about fundamental physics and gravity, wrapped up in non-Gaussian fields. To make use of as much information as possible it is necessary to go beyond two-point statistics. Rather than going to higher order N-point correlation functions, we demonstrate that the probability distribution function (PDF) of spheres in the matter field (a one-point function) already contains a significant amount of this non-Gaussian information. The matter PDF dissects different density environments which are lumped together in two-point statistics, making it particularly useful for probing modifications of gravity or expansion history. Our approach in Cataneo et. al. 2021 extends the success of Large Deviation Theory for predicting the matter PDF in ΛCDM in these “extended” cosmologies. A Fisher forecast demonstrates the information content in the matter PDF via constraints for a Euclid-like survey volume combining the 3D matter PDF with the 3D matter power spectrum. Adding the matter PDF halves the uncertainties on parameters in an evolving dark energy model, relative to the power spectrum alone. Additionally, the matter PDF contains enough non-linear information to substantially increase the detection significance of departures from General Relativity, with improvements up to six times the power spectrum alone. This analysis demonstrates that the matter PDF is a promising non-Gaussian statistic for extracting cosmological information, particularly for beyond ΛCDM models.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gary P. Centers ◽  
John W. Blanchard ◽  
Jan Conrad ◽  
Nataniel L. Figueroa ◽  
Antoine Garcon ◽  
...  

AbstractNumerous theories extending beyond the standard model of particle physics predict the existence of bosons that could constitute dark matter. In the standard halo model of galactic dark matter, the velocity distribution of the bosonic dark matter field defines a characteristic coherence time τc. Until recently, laboratory experiments searching for bosonic dark matter fields have been in the regime where the measurement time T significantly exceeds τc, so null results have been interpreted by assuming a bosonic field amplitude Φ0 fixed by the average local dark matter density. Here we show that experiments operating in the T ≪ τc regime do not sample the full distribution of bosonic dark matter field amplitudes and therefore it is incorrect to assume a fixed value of Φ0 when inferring constraints. Instead, in order to interpret laboratory measurements (even in the event of a discovery), it is necessary to account for the stochastic nature of such a virialized ultralight field. The constraints inferred from several previous null experiments searching for ultralight bosonic dark matter were overestimated by factors ranging from 3 to 10 depending on experimental details, model assumptions, and choice of inference framework.


2021 ◽  
Author(s):  
Tee-How Loo ◽  
Avik De ◽  
Sanjay Mandal ◽  
P. K. Sahoo

Abstract In the present paper we examine a projectively flat spacetime solution of F(R)-gravity theory. It is seen that once we deploy projective flatness in the geometry of the spacetime, the matter field has constant energy density and isotropic pressure. We then make the condition weaker and discuss the effects of projectively harmonic spacetime geometry in F(R)-gravity theory and show that the spacetime in this case reduces to a generalised Robertson-Walker spacetime with a shear, vorticity, acceleration free perfect fluid with a specific form of expansion scalar presented in terms of the scale factor. Role of conharmonic curvature tensor in the spacetime geometry is also briefly discussed. Some analysis of the obtained results are conducted in terms of couple of F(R)-gravity models.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
João Luís Rosa ◽  
Matheus A. Marques ◽  
Dionisio Bazeia ◽  
Francisco S. N. Lobo

AbstractBraneworld scenarios consider our observable universe as a brane embedded in a five-dimensional bulk. In this work, we consider thick braneworld systems in the recently proposed dynamically equivalent scalar–tensor representation of f(R, T) gravity, where R is the Ricci scalar and T the trace of the stress–energy tensor. In the general $$f\left( R,T\right) $$ f R , T case we consider two different models: a brane model without matter fields where the geometry is supported solely by the gravitational fields, and a second model where matter is described by a scalar field with a potential. The particular cases for which the function $$f\left( R,T\right) $$ f R , T is separable in the forms $$F\left( R\right) +T$$ F R + T and $$R+G\left( T\right) $$ R + G T , which give rise to scalar–tensor representations with a single auxiliary scalar field, are studied separately. The stability of the gravitational sector is investigated and the models are shown to be stable against small perturbations of the metric. Furthermore, we show that in the $$f\left( R,T\right) $$ f R , T model in the presence of an extra matter field, the shape of the graviton zero-mode develops internal structure under appropriate choices of the parameters of the model.


2021 ◽  
Vol 2021 (11) ◽  
pp. 050
Author(s):  
Shadab Alam ◽  
Christian Arnold ◽  
Alejandro Aviles ◽  
Rachel Bean ◽  
Yan-Chuan Cai ◽  
...  

Abstract Shortly after its discovery, General Relativity (GR) was applied to predict the behavior of our Universe on the largest scales, and later became the foundation of modern cosmology. Its validity has been verified on a range of scales and environments from the Solar system to merging black holes. However, experimental confirmations of GR on cosmological scales have so far lacked the accuracy one would hope for — its applications on those scales being largely based on extrapolation and its validity there sometimes questioned in the shadow of the discovery of the unexpected cosmic acceleration. Future astronomical instruments surveying the distribution and evolution of galaxies over substantial portions of the observable Universe, such as the Dark Energy Spectroscopic Instrument (DESI), will be able to measure the fingerprints of gravity and their statistical power will allow strong constraints on alternatives to GR. In this paper, based on a set of N-body simulations and mock galaxy catalogs, we study the predictions of a number of traditional and novel summary statistics beyond linear redshift distortions in two well-studied modified gravity models — chameleon f(R) gravity and a braneworld model — and the potential of testing these deviations from GR using DESI. These summary statistics employ a wide array of statistical properties of the galaxy and the underlying dark matter field, including two-point and higher-order statistics, environmental dependence, redshift space distortions and weak lensing. We find that they hold promising power for testing GR to unprecedented precision. The major future challenge is to make realistic, simulation-based mock galaxy catalogs for both GR and alternative models to fully exploit the statistic power of the DESI survey (by matching the volumes and galaxy number densities of the mocks to those in the real survey) and to better understand the impact of key systematic effects. Using these, we identify future simulation and analysis needs for gravity tests using DESI.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1903
Author(s):  
Nadhem Brahim ◽  
Nissaf Karbout ◽  
Latifa Dhaouadi ◽  
Abdelhakim Bouajila

The oasis soils of Tunisia face several climatic and soil constraints. Trying to have cultures that are profitable and beneficial in terms of soil C and N sequestration in such environments is already a challenge. To conduct this, we tested under identical conditions four types of occupation in sub-plots adjacent to the crops; barley alone, alfalfa alone, intercropping barley/alfalfa, and a control fallow in a saline gypseous desert soil poor in organic matter. Field experimentation was carried out in the oasis of Degache, which is very representative of other Tunisian oases. The stocks of C and N of the plot were calculated from the start in September 2019 before the installation of the different crops. After 21 months, the control plot shows a decrease of −41% in its stock of C and −25% in its stock N. However, the best result is that of the barley/alfalfa intercropping with an increase of +126.46% in the C stock and +178.67% in the N stock. After almost two years of experience, the beneficial effect of the intercropping system in the oasis is clear. These results are very motivating and seem to be a solution to the rapid decline in soil organic stocks.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1712
Author(s):  
Flavio Mercati ◽  
Paula Reichert

We discuss the total collision singularities of the gravitational N-body problem on shape space. Shape space is the relational configuration space of the system obtained by quotienting ordinary configuration space with respect to the similarity group of total translations, rotations, and scalings. For the zero-energy gravitating N-body system, the dynamics on shape space can be constructed explicitly and the points of total collision, which are the points of central configuration and zero shape momenta, can be analyzed in detail. It turns out that, even on shape space where scale is not part of the description, the equations of motion diverge at (and only at) the points of total collision. We construct and study the stratified total-collision manifold and show that, at the points of total collision on shape space, the singularity is essential. There is, thus, no way to evolve solutions through these points. This mirrors closely the big bang singularity of general relativity, where the homogeneous-but-not-isotropic cosmological model of Bianchi IX shows an essential singularity at the big bang. A simple modification of the general-relativistic model (the addition of a stiff matter field) changes the system into one whose shape-dynamical description allows for a deterministic evolution through the singularity. We suspect that, similarly, some modification of the dynamics would be required in order to regularize the total collision singularity of the N-body model.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
P. G. N. de Vegvar

AbstractAn integral kernel representation for the commutative $$\star $$ ⋆ -product on curved classical spacetime is introduced. Its convergence conditions and relationship to a Drin’feld differential twist are established. A $$\star $$ ⋆ -Einstein field equation can be obtained, provided the matter-based twist’s vector generators are fixed to self-consistent values during the variation in order to maintain $$\star $$ ⋆ -associativity. Variations not of this type are non-viable as classical field theories. $$\star $$ ⋆ -Gauge theory on such a spacetime can be developed using $$\star $$ ⋆ -Ehresmann connections. While the theory preserves Lorentz invariance and background independence, the standard ADM $$3+1$$ 3 + 1 decomposition of 4-diffs in general relativity breaks down, leading to different $$\star $$ ⋆ -constraints. No photon or graviton ghosts are found on $$\star $$ ⋆ -Minkowski spacetime. $$\star $$ ⋆ -Friedmann equations are derived and solved for $$\star $$ ⋆ -FLRW cosmologies. Big Bang Nucleosynthesis restricts expressions for the twist generators. Allowed generators can be constructed which account for dark matter as arising from a twist producing non-standard model matter field. The theory also provides a robust qualitative explanation for the matter-antimatter asymmetry of the observable Universe. Particle exchange quantum statistics encounters thresholded modifications due to violations of the cluster decomposition principle on the nonlocality length scale $$\sim 10^{3-5} \,L_P$$ ∼ 10 3 - 5 L P . Precision Hughes–Drever measurements of spacetime anisotropy appear as the most promising experimental route to test deformed general relativity.


Sign in / Sign up

Export Citation Format

Share Document