scholarly journals SPITZEROBSERVATIONS OF THE TYPE IA SUPERNOVA REMNANT N103B: KEPLER'S OLDER COUSIN?

2014 ◽  
Vol 790 (2) ◽  
pp. 139 ◽  
Author(s):  
Brian J. Williams ◽  
Kazimierz J. Borkowski ◽  
Stephen P. Reynolds ◽  
Parviz Ghavamian ◽  
John C. Raymond ◽  
...  
2012 ◽  
Vol 755 (1) ◽  
pp. 3 ◽  
Author(s):  
Brian J. Williams ◽  
Kazimierz J. Borkowski ◽  
Stephen P. Reynolds ◽  
Parviz Ghavamian ◽  
William P. Blair ◽  
...  

2021 ◽  
Vol 913 (2) ◽  
pp. L34
Author(s):  
Yuken Ohshiro ◽  
Hiroya Yamaguchi ◽  
Shing-Chi Leung ◽  
Ken’ichi Nomoto ◽  
Toshiki Sato ◽  
...  

Author(s):  
Makoto Sawada ◽  
Katsuhiro Tachibana ◽  
Hiroyuki Uchida ◽  
Yuta Ito ◽  
Hideaki Matsumura ◽  
...  

2015 ◽  
Vol 801 (2) ◽  
pp. L31 ◽  
Author(s):  
Hiroya Yamaguchi ◽  
Carles Badenes ◽  
Adam R. Foster ◽  
Eduardo Bravo ◽  
Brian J. Williams ◽  
...  

2014 ◽  
Vol 792 (1) ◽  
pp. L20 ◽  
Author(s):  
Seth Post ◽  
Sangwook Park ◽  
Carles Badenes ◽  
David N. Burrows ◽  
John P. Hughes ◽  
...  

2014 ◽  
Vol 441 (4) ◽  
pp. 3040-3054 ◽  
Author(s):  
Sjors Broersen ◽  
Alexandros Chiotellis ◽  
Jacco Vink ◽  
Aya Bamba

2012 ◽  
Vol 749 (2) ◽  
pp. 137 ◽  
Author(s):  
H. Yamaguchi ◽  
M. Tanaka ◽  
K. Maeda ◽  
P. O. Slane ◽  
A. Foster ◽  
...  

2008 ◽  
Author(s):  
Katsuji Koyama ◽  
Takuma Suda ◽  
Takaya Nozawa ◽  
Akira Ohnishi ◽  
Kiyoshi Kato ◽  
...  

2012 ◽  
Vol 754 (2) ◽  
pp. 88
Author(s):  
Satoshi Hamano ◽  
Naoto Kobayashi ◽  
Sohei Kondo ◽  
Takuji Tsujimoto ◽  
Katsuya Okoshi ◽  
...  

2021 ◽  
Vol 923 (2) ◽  
pp. 233
Author(s):  
Alice Griffeth Stone ◽  
Heather T. Johnson ◽  
John M. Blondin ◽  
Richard A. Watson ◽  
Kazimierz J. Borkowski ◽  
...  

Abstract The youngest Galactic supernova remnant, G1.9+0.3, probably the result of a Type Ia supernova, shows surprising anomalies in the distribution of its ejecta in space and velocity. In particular, high-velocity shocked iron is seen in several locations far from the remnant center, in some cases beyond prominent silicon and sulfur emission. These asymmetries strongly suggest a highly asymmetric explosion. We present high-resolution hydrodynamic simulations in two and three dimensions of the evolution from ages of 100 s to hundreds of years of two asymmetric Type Ia models, expanding into a uniform medium. At the age of G1.9+0.3 (about 100 yr), our 2D model shows almost no iron shocked to become visible in X-rays. Only in a much higher-density environment could significant iron be shocked, at which time the model's expansion speed is completely inconsistent with the observations of G1.9+0.3. Our 3D model, evolving the most asymmetric of a suite of Type Ia supernova models from Seitenzahl et al. (2013), shows some features resembling G1.9+0.3. We characterize its evolution with images of composition in three classes: C and O, intermediate-mass elements (IMEs), and iron-group elements (IGEs). From ages of 13 to 1800 yr, we follow the evolution of the highly asymmetric initial remnant as the explosion asymmetries decrease in relative strength, to be replaced by asymmetries due to evolutionary hydrodynamic instabilities. At an age of about 100 yr, our 3D model has comparable shocked masses of C+O, IMEs, and IGEs, with about 0.03 M ⊙ each. Evolutionary changes appear to be rapid enough that continued monitoring with the Chandra X-ray Observatory may show significant variations.


Sign in / Sign up

Export Citation Format

Share Document