The Curie constant of the rare earths and the valence bond

1980 ◽  
Vol 13 (9) ◽  
pp. L205-L208 ◽  
Author(s):  
X Oudet
1971 ◽  
Vol 32 (C1) ◽  
pp. C1-179-C1-185 ◽  
Author(s):  
S. CHIKAZUMI ◽  
K. TAJIMA ◽  
K. TOYAMA
Keyword(s):  

1979 ◽  
Vol 40 (C5) ◽  
pp. C5-17-C5-18
Author(s):  
M. de Jong ◽  
P. Touborg ◽  
J. Bijvoet

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-511-C2-512 ◽  
Author(s):  
E. Gratz ◽  
E. Bauer ◽  
S. Pöllinger ◽  
H. Nowotny ◽  
A. T. Burkov ◽  
...  

2019 ◽  
Author(s):  
Ishita Bhattacharjee ◽  
Debashree Ghosh ◽  
Ankan Paul

The question of quadruple bonding in C<sub>2</sub> has emerged as a hot button issue, with opinions sharply divided between the practitioners of Valence Bond (VB) and Molecular Orbital (MO) theory. Here, we have systematically studied the Potential Energy Curves (PECs) of low lying high spin sigma states of C<sub>2</sub>, N<sub>2</sub> and Be<sub>2</sub> and HC≡CH using several MO based techniques such as CASSCF, RASSCF and MRCI. The analyses of the PECs for the<sup> 2S+1</sup>Σ<sub>g/u</sub> (with 2S+1=1,3,5,7,9) states of C<sub>2</sub> and comparisons with those of relevant dimers and the respective wavefunctions were conducted. We contend that unlike in the case of N<sub>2</sub> and HC≡CH, the presence of a deep minimum in the <sup>7</sup>Σ state of C<sub>2</sub> and CN<sup>+</sup> suggest a latent quadruple bonding nature in these two dimers. Hence, we have struck a reconciliatory note between the MO and VB approaches. The evidence provided by us can be experimentally verified, thus providing the window so that the narrative can move beyond theoretical conjectures.


Alloy Digest ◽  
2005 ◽  
Vol 54 (11) ◽  

Abstract Incotherm TD is a thermocouple-sheathing alloy with elements of silicon and rare earths to enhance oxidation resistance at high temperatures. This datasheet provides information on composition, physical properties, and tensile properties as well as deformation. It also includes information on high temperature performance and corrosion resistance as well as forming. Filing Code: Ni-628. Producer or source: Special Metals Corporation.


2007 ◽  
Vol 18 (Issue 1-A) ◽  
pp. 75-85
Author(s):  
N. EL-HAZEK ◽  
T. AMER ◽  
M. BADR ◽  
N. SHAWKY ◽  
D. ZAKY

Sign in / Sign up

Export Citation Format

Share Document