A gradient control device for complete three-dimensional nuclear magnetic resonance zeugmatographic imaging

1980 ◽  
Vol 13 (7) ◽  
pp. 747-750 ◽  
Author(s):  
Ching-Ming Lai ◽  
P C Lauterbur
Biomolecules ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 235
Author(s):  
Cheenou Her ◽  
Yin Yeh ◽  
Viswanathan V. Krishnan

The primary sequence of antifreeze glycoproteins (AFGPs) is highly degenerate, consisting of multiple repeats of the same tripeptide, Ala–Ala–Thr*, in which Thr* is a glycosylated threonine with the disaccharide beta-d-galactosyl-(1,3)-alpha-N-acetyl-d-galactosamine. AFGPs seem to function as intrinsically disordered proteins, presenting challenges in determining their native structure. In this work, a different approach was used to elucidate the three-dimensional structure of AFGP8 from the Arctic cod Boreogadus saida and the Antarctic notothenioid Trematomus borchgrevinki. Dimethyl sulfoxide (DMSO), a non-native solvent, was used to make AFGP8 less dynamic in solution. Interestingly, DMSO induced a non-native structure, which could be determined via nuclear magnetic resonance (NMR) spectroscopy. The overall three-dimensional structures of the two AFGP8s from two different natural sources were different from a random coil ensemble, but their “compactness” was very similar, as deduced from NMR measurements. In addition to their similar compactness, the conserved motifs, Ala–Thr*–Pro–Ala and Ala–Thr*–Ala–Ala, present in both AFGP8s, seemed to have very similar three-dimensional structures, leading to a refined definition of local structural motifs. These local structural motifs allowed AFGPs to be considered functioning as effectors, making a transition from disordered to ordered upon binding to the ice surface. In addition, AFGPs could act as dynamic linkers, whereby a short segment folds into a structural motif, while the rest of the AFGPs could still be disordered, thus simultaneously interacting with bulk water molecules and the ice surface, preventing ice crystal growth.


1983 ◽  
Vol 7 (1) ◽  
pp. 172-174 ◽  
Author(s):  
Leon Axel ◽  
Gabor T. Herman ◽  
Jayaram K. Udupa ◽  
Paul A. Bottomley ◽  
William A. Edelstein

Sign in / Sign up

Export Citation Format

Share Document