scholarly journals Analytical calculation of nonadiabatic transition probabilities from the monodromy of differential equations

2003 ◽  
Vol 36 (21) ◽  
pp. 5803-5815 ◽  
Author(s):  
T Kato ◽  
K Nakamura ◽  
M Lakshmanan
1973 ◽  
Vol 73 (1) ◽  
pp. 119-138 ◽  
Author(s):  
Gerald S. Goodman ◽  
S. Johansen

1. SummaryWe shall consider a non-stationary Markov chain on a countable state space E. The transition probabilities {P(s, t), 0 ≤ s ≤ t <t0 ≤ ∞} are assumed to be continuous in (s, t) uniformly in the state i ε E.


Genetics ◽  
2020 ◽  
Vol 216 (4) ◽  
pp. 1187-1204
Author(s):  
Ian Holmes

We introduce a systematic method of approximating finite-time transition probabilities for continuous-time insertion-deletion models on sequences. The method uses automata theory to describe the action of an infinitesimal evolutionary generator on a probability distribution over alignments, where both the generator and the alignment distribution can be represented by pair hidden Markov models (HMMs). In general, combining HMMs in this way induces a multiplication of their state spaces; to control this, we introduce a coarse-graining operation to keep the state space at a constant size. This leads naturally to ordinary differential equations for the evolution of the transition probabilities of the approximating pair HMM. The TKF91 model emerges as an exact solution to these equations for the special case of single-residue indels. For the more general case of multiple-residue indels, the equations can be solved by numerical integration. Using simulated data, we show that the resulting distribution over alignments, when compared to previous approximations, is a better fit over a broader range of parameters. We also propose a related approach to develop differential equations for sufficient statistics to estimate the underlying instantaneous indel rates by expectation maximization. Our code and data are available at https://github.com/ihh/trajectory-likelihood.


Author(s):  
G. E. H. Reuter ◽  
W. Ledermann ◽  
M. S. Bartlett

Let pik (s, t) (i, k = 1, 2, …; s ≤ t) be the transition probabilities of a Markov process in a system with an enumerable set of states. The states are labelled by positive integers, and pik (s, t) is the conditional probability that the system be in state k at time t, given that it was in state i at an earlier time s. If certain regularity conditions are imposed on the pik, they can be shown to satisfy the well-known Kolmogorov equations§


1990 ◽  
Vol 22 (1) ◽  
pp. 111-128 ◽  
Author(s):  
P. K. Pollett ◽  
A. J. Roberts

We use the notion of an invariant manifold to describe the long-term behaviour of absorbing continuous-time Markov processes with a denumerable infinity of states. We show that there exists an invariant manifold for the forward differential equations and we are able to describe the evolution of the state probabilities on this manifold. Our approach gives rise to a new method for calculating conditional limiting distributions, one which is also appropriate for dealing with processes whose transition probabilities satisfy a system of non-linear differential equations.


1990 ◽  
Vol 22 (01) ◽  
pp. 111-128 ◽  
Author(s):  
P. K. Pollett ◽  
A. J. Roberts

We use the notion of an invariant manifold to describe the long-term behaviour of absorbing continuous-time Markov processes with a denumerable infinity of states. We show that there exists an invariant manifold for the forward differential equations and we are able to describe the evolution of the state probabilities on this manifold. Our approach gives rise to a new method for calculating conditional limiting distributions, one which is also appropriate for dealing with processes whose transition probabilities satisfy a system of non-linear differential equations.


Author(s):  
Bálint Farkas ◽  
Martin Friesen ◽  
Barbara Rüdiger ◽  
Dennis Schroers

AbstractIn this work we investigate the long-time behavior for Markov processes obtained as the unique mild solution to stochastic partial differential equations in a Hilbert space. We analyze the existence and characterization of invariant measures as well as convergence of transition probabilities. While in the existing literature typically uniqueness of invariant measures is studied, we focus on the case where the uniqueness of invariant measures fails to hold. Namely, introducing a generalized dissipativity condition combined with a decomposition of the Hilbert space, we prove the existence of multiple limiting distributions in dependence of the initial state of the process and study the convergence of transition probabilities in the Wasserstein 2-distance. Finally, we apply our results to Lévy driven Ornstein–Uhlenbeck processes, the Heath–Jarrow–Morton–Musiela equation as well as to stochastic partial differential equations with delay.


Sign in / Sign up

Export Citation Format

Share Document