analytical calculation
Recently Published Documents


TOTAL DOCUMENTS

1333
(FIVE YEARS 399)

H-INDEX

44
(FIVE YEARS 6)

2022 ◽  
pp. 1-15
Author(s):  
Pranay Seshadri ◽  
Andrew Duncan ◽  
George Thorne

Abstract This paper introduces the Bayesian mass average and details its computation. Owing to the complexity of flow in an engine and the limited instrumentation and the precision of the sensor apparatus used, it is difficult to rigorously calculate mass averages. Building upon related work, this paper views any thermodynamic quantity's spatial variation at an axial plane in an engine (or a rig) as a Gaussian random field. In cases where the mass flow rate is constant in the circumferential direction but can be expressed via a polynomial or spline radially, this paper presents an analytical calculation of the Bayesian mass average. In cases where the mass flow rate itself can be expressed as a Gaussian random field, a sampling procedure is presented to calculate the Bayesian mass average. Examples of the calculation of the Bayesian mass average for temperature are presented, including with a real engine case study where velocity profiles are inferred from stagnation pressure measurements.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 503
Author(s):  
Barzan Tabei ◽  
Akihiro Ametani ◽  
Aniruddha M. Gole ◽  
Behzad Kordi

This paper presents an accurate quasi-analytical approximation of frequency-dependent ac resistance of single rectangular conductors. In this work, first, a two-dimensional analytical ac resistance of rectangular conductors is derived. Unlike circular conductors, where current density distributes evenly in each layer of the conductor’s cross-section, the edge effect is involved for rectangular conductors. Due to the edge effect, one cannot define an accurate boundary condition for solving the two-dimensional partial differential equation of magnetic field or current density of rectangular conductors. Hence, the calculated two-dimensional analytical current density result is not accurate and is modified and fitted on FEM simulation, taking the conductor’s thickness into account using the least-square problem to improve its accuracy. Unlike numerical approaches, the proposed method yields an easy-to-use formula applicable to industrial applications in different fields. Contrary to the one-dimensional approach, which is only valid for very thin rectangular conductors, this method takes edge effect into account and can be used for any thickness (from square to very thin rectangular conductors). The proposed method can be used in applications where an accurate ac resistance of rectangular conductors over a wide frequency range is required, such as white-box modeling of power transformers and interpreting its frequency response analysis (FRA), and calculating the resistance of electric machine winding, busbars, and printed circuit board traces.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 256
Author(s):  
Florian Brüning ◽  
Volker Schöppner

For plastic processing extruders with grooved feed sections, the design of the feed section by means of analytical calculation models can be useful to reduce experimental costs. However, these models include assumptions and simplifications that can significantly decrease the prediction accuracy of the throughput due to complex flow behavior. In this paper, the accuracy of analytical modeling for calculating the throughput in a grooved barrel extruder is verified based on a statistical design of experiments. A special focus is placed on the assumptions made in the analytics of a backpressure-independent throughput, the assumption of a block flow and the differentiation of the solids conveying into different conveying cases. Simulative throughput tests with numerical simulation software using the discrete element method, as well as experimental throughput tests, serve as a benchmark. Overall, the analytical modeling already shows a very good calculation accuracy. Nevertheless, there are some outliers that lead to larger deviations in the throughput. The model predominantly overestimates the throughputs, whereby the origin of these deviations is often in the conveying angle calculation. Therefore, a regression-based correction factor for calculating the conveying angle is developed and implemented.


2022 ◽  
Vol 905 ◽  
pp. 297-302
Author(s):  
Lin Liu ◽  
Mei Qing Zhang

In order to investigate the temperature distribution and cracking risk of concrete in winter under the combined action of heating zone and air layer, the analytical calculation method of early age concrete temperature field of concrete component under the combined action of self-limiting temperature band, cement hydration and air layer was established by taking concrete prism with self-limiting temperature band as an example. The model is applied to calculate and analyze the temperature distribution of concrete under different boundary conditions and different additional thermal field modes. The results show that: Under the conditions of internal layout, surface layout and thermal insulation layer outside the formwork, all components reach the critical strength after heating and curing for three days, which indicates that the heating band can provide temperature conditions for concrete curing in winter. Comparing the temperature field of different layout positions of heating belt, the uniformity of temperature field of heating belt outside the formwork is better than the other two layout methods.


2022 ◽  
Vol 92 (1) ◽  
pp. 22
Author(s):  
В.М. Кисеев ◽  
О.В. Сажин

Heat transfer in capillary pumped loops (CPL) is carried out by transferring the mass of the circulating coolant in the form of liquid and vapor. Therefore, the hydrodynamics of the phases in the CPL determines their heat transfer capacity (heat flow or the product of the heat flow by the heat transfer length). The influence of structural, hydraulic and thermo-physical properties of capillary structures used as capillary pumps in two-phase thermal control systems (Loop Heat Pipes - LHP) on their heat transfer capacity has been analyzed. Methods of increasing the heat transfer capacity of LHP, due to the use of anisotropic capillary structures with a decrease in pore sizes in the direction of the vaporization zone, have been determined. The conditions of LHP operability and the method of analytical calculation of the temperature field in anisotropic capillary structures for a model with pseudo-convection have been considered. The calculated and experimental data have been compared.


2021 ◽  
Vol 16 (2) ◽  
Author(s):  
Denis Molnár ◽  
Miroslav Blatnický ◽  
Ján Dižo

A bridge crane is a type of crane that is designed for lifting / lowering and transferring material in the horizontal direction and is used mainly in production halls, warehouses and transship points. A part of the lifting mechanism of the bridge crane is a crane hook on which the load is suspended. Sufficient strength is required from the crane hook in order to be able to withstand high loads relatively well. The most stressed part of the crane hook is the curved inner surface. This surface is considered critical in terms of strength. The goal of this paper is to select a suitable crane hook for a single girder bridge crane with a load capacity of 500 kg and a strength analysis of the selected crane hook. Strength analysis is performed by two methods, first is based on analytical calculation and second is based on finite element method (FEM) performed in Ansys software. The comparison of the obtained total stresses from both methods is the part of the analysis. From the results of the FEM analysis and analytical calculation it can be stated that the selected crane hook RSN 05 P - DIN 15401 with a load capacity of 500 kg is suitable for the above-mentioned bridge crane. It can also be concluded that the total stress determined by the analytical calculation is lower by 9.8 % compared to the stress obtained from the Ansys software.


2021 ◽  
Vol 1 (74) ◽  
pp. 40-44
Author(s):  
G Malinin

This paper presents an analytical calculation of the stress-strain state of a ribbed plate supported by a cross system of stiffeners. The calculation was carried out by the Ritz method using the Maple mathematical package


2021 ◽  
Vol 6 (1 (114)) ◽  
pp. 56-64
Author(s):  
Ruslan Puzyr ◽  
Viktor Shchetynin ◽  
Viktor Vorobyov ◽  
Alexandr Salenko ◽  
Roman Arhat ◽  
...  

This paper shows that the technological preparation of production accounts for 20‒70 % of the total labor intensity of technical preparation. An important role belongs to the applied programs of finite-element modeling. However, such software packages often cannot be purchased by small-scale industrial enterprises for various reasons. Therefore, special empirical and analytical calculation models are used, which have proved to be quite effective in typical metal processing processes. Drawing a cylindrical hollow part was used as an example of the improved analytical dependence to calculate meridional tensile stresses. Existing analytical models of the process accounted for the bending moment through additional stresses. However, this approach only roughly described the deformation process. It was possible to refine the existing analytical dependences by introducing a term into the differential equilibrium equations that takes into consideration the bending moment that acts in the meridional direction when a workpiece passes the rounding on the matrix edge. Analysis of the obtained expression revealed that the bending of a workpiece gives rise to the stretching meridional stresses, which depend on the ratio of the squares of the thickness of the workpiece and the radius of the matrix rounding. The results of the estimation data from the numerical and theoretical models coincided for small values of the radius of the matrix rounding of 1‒2 mm, which confirms the adequacy of the analytical solution. In the numerical model, there is an extreme point where the tensile stresses have a minimum and, after it, begin to increase; this corresponds to the matrix rounding radius of 5 mm


Sign in / Sign up

Export Citation Format

Share Document