On the differential equations for the transition probabilities of Markov processes with enumerably many states

Author(s):  
G. E. H. Reuter ◽  
W. Ledermann ◽  
M. S. Bartlett

Let pik (s, t) (i, k = 1, 2, …; s ≤ t) be the transition probabilities of a Markov process in a system with an enumerable set of states. The states are labelled by positive integers, and pik (s, t) is the conditional probability that the system be in state k at time t, given that it was in state i at an earlier time s. If certain regularity conditions are imposed on the pik, they can be shown to satisfy the well-known Kolmogorov equations§

1993 ◽  
Vol 6 (4) ◽  
pp. 385-406 ◽  
Author(s):  
N. U. Ahmed ◽  
Xinhong Ding

We consider a nonlinear (in the sense of McKean) Markov process described by a stochastic differential equations in Rd. We prove the existence and uniqueness of invariant measures of such process.


1973 ◽  
Vol 5 (01) ◽  
pp. 66-102 ◽  
Author(s):  
J. F. C. Kingman

Ifx0is a particular state for a continuous-time Markov processX, the random time setis often of both practical and theoretical interest. Ignoring trivial or pathological cases, there are four different types of structure which this random set can display. To some extent, it is possible to treat all four cases in a unified way, but they raise different questions and require different modes of description. The distributions of various random quantities associated withcan be related to one another by simple and useful formulae.


1986 ◽  
Vol 38 (2) ◽  
pp. 397-415 ◽  
Author(s):  
Jairo Charris ◽  
Mourad E. H. Ismail

A birth and death process is a stationary Markov process whose states are the nonnegative integers and the transition probabilities(1.1)satisfy(1.2)as t → 0. Here we assume βn > 0, δn + 1 > 0, n = 0, 1, …, but δ0 ≦ 0. Karlin and McGregor [10], [11], [12], showed that each birth and death process gives rise to two sets of orthogonal polynomials. The first is the set of birth and death process polynomials {Qn(x)} generated by


1972 ◽  
Vol 9 (04) ◽  
pp. 789-802
Author(s):  
Choong K. Cheong ◽  
Jozef L. Teugels

Let {Zt, t ≧ 0} be an irreducible regular semi-Markov process with transition probabilities Pij (t). Let f(t) be non-negative and non-decreasing to infinity, and let λ ≧ 0. This paper identifies a large set of functions f(t) with the solidarity property that convergence of the integral ≧ eλtf(t)Pij (t) dt for a specific pair of states i and j implies convergence of the integral for all pairs of states. Similar results are derived for the Markov renewal functions Mij (t). Among others it is shown that f(t) can be taken regularly varying.


1973 ◽  
Vol 73 (1) ◽  
pp. 119-138 ◽  
Author(s):  
Gerald S. Goodman ◽  
S. Johansen

1. SummaryWe shall consider a non-stationary Markov chain on a countable state space E. The transition probabilities {P(s, t), 0 ≤ s ≤ t <t0 ≤ ∞} are assumed to be continuous in (s, t) uniformly in the state i ε E.


1970 ◽  
Vol 7 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Thomas G. Kurtz

In a great variety of fields, e.g., biology, epidemic theory, physics, and chemistry, ordinary differential equations are used to give continuous deterministic models for dynamic processes which are actually discrete and random in their development. Perhaps the simplest example is the differential equation used to describe a number of processes including radioactive decay and population growth.


2020 ◽  
Vol 24 ◽  
pp. 100-112
Author(s):  
Ramsés H. Mena ◽  
Freddy Palma

This work links the conditional probability structure of Lancaster probabilities to a construction of reversible continuous-time Markov processes. Such a task is achieved by using the spectral expansion of the corresponding transition probabilities in order to introduce a continuous time dependence in the orthogonal representation inherent to Lancaster probabilities. This relationship provides a novel methodology to build continuous-time Markov processes via Lancaster probabilities. Particular cases of well-known models are seen to fall within this approach. As a byproduct, it also unveils new identities associated to well known orthogonal polynomials.


1970 ◽  
Vol 7 (02) ◽  
pp. 388-399 ◽  
Author(s):  
C. K. Cheong

Our main concern in this paper is the convergence, as t → ∞, of the quantities i, j ∈ E; where Pij (t) is the transition probability of a semi-Markov process whose state space E is irreducible but not closed (i.e., escape from E is possible), and rj is the probability of eventual escape from E conditional on the initial state being i. The theorems proved here generalize some results of Seneta and Vere-Jones ([8] and [11]) for Markov processes.


Sign in / Sign up

Export Citation Format

Share Document