scholarly journals Conformal Killing horizons and their thermodynamics

2018 ◽  
Vol 35 (10) ◽  
pp. 105008 ◽  
Author(s):  
Alex B Nielsen ◽  
Andrey A Shoom
2015 ◽  
Vol 92 (4) ◽  
Author(s):  
Ayan Chatterjee ◽  
Avirup Ghosh

1979 ◽  
Vol 20 (3) ◽  
pp. 409-412 ◽  
Author(s):  
C. C. Dyer ◽  
E. Honig

2004 ◽  
Vol 45 (12) ◽  
pp. 4764-4776 ◽  
Author(s):  
J. Sultana ◽  
C. C. Dyer

2016 ◽  
Vol 12 (3) ◽  
pp. 4350-4355
Author(s):  
VIBHA SRIVASTAVA ◽  
P. N. PANDEY

The object of the present paper is to study a perfect fluid K¨ahlerspacetime. A perfect fluid K¨ahler spacetime satisfying the Einstein field equation with a cosmological term has been studied and the existence of killingand conformal killing vectors have been discussed. Certain results related to sectional curvature for pseudo projectively flat perfect fluid K¨ahler spacetime have been obtained. Dust model for perfect fluid K¨ahler spacetime has also been studied.


2006 ◽  
Vol 03 (05n06) ◽  
pp. 1263-1271
Author(s):  
J. SZENTHE

Some event horizons in space–times that are invariant under an isometric action, considered first by Carter, are called isometry horizons, especially Killing horizons. In this paper, isometry horizons in spherically symmetric space–times are considered. It is shown that these isometry horizons are all Killing horizons.


2018 ◽  
Vol 35 (15) ◽  
pp. 155015 ◽  
Author(s):  
Marc Mars ◽  
Tim-Torben Paetz ◽  
José M M Senovilla
Keyword(s):  

2003 ◽  
Vol 12 (05) ◽  
pp. 885-892 ◽  
Author(s):  
HÜSNÜ BAYSAL

We study the consequences of the existence of spacelike conformal Killing vectors (SpCKV) parallel to xa for cosmic strings and string fluid in the context of general relativity. The inheritance symmetries of the cosmic strings and string fluid are discussed in the case of SpCKV. Furthermore we examine proper homothetic spacelike Killing vectors for the cosmic strings and string fluid.


2016 ◽  
Vol 13 (02) ◽  
pp. 1650015 ◽  
Author(s):  
Carlo Alberto Mantica ◽  
Young Jin Suh

In this paper we present some new results about [Formula: see text]-dimensional pseudo-Z symmetric space-times. First we show that if the tensor Z satisfies the Codazzi condition then its rank is one, the space-time is a quasi-Einstein manifold, and the associated 1-form results to be null and recurrent. In the case in which such covector can be rescaled to a covariantly constant we obtain a Brinkmann-wave. Anyway the metric results to be a subclass of the Kundt metric. Next we investigate pseudo-Z symmetric space-times with harmonic conformal curvature tensor: a complete classification of such spaces is obtained. They are necessarily quasi-Einstein and represent a perfect fluid space-time in the case of time-like associated covector; in the case of null associated covector they represent a pure radiation field. Further if the associated covector is locally a gradient we get a Brinkmann-wave space-time for [Formula: see text] and a pp-wave space-time in [Formula: see text]. In all cases an algebraic classification for the Weyl tensor is provided for [Formula: see text] and higher dimensions. Then conformally flat pseudo-Z symmetric space-times are investigated. In the case of null associated covector the space-time reduces to a plane wave and results to be generalized quasi-Einstein. In the case of time-like associated covector we show that under the condition of divergence-free Weyl tensor the space-time admits a proper concircular vector that can be rescaled to a time like vector of concurrent form and is a conformal Killing vector. A recent result then shows that the metric is necessarily a generalized Robertson–Walker space-time. In particular we show that a conformally flat [Formula: see text], [Formula: see text], space-time is conformal to the Robertson–Walker space-time.


Sign in / Sign up

Export Citation Format

Share Document