Rail surface defect inspection via self-reference template and similarity evaluation

Author(s):  
Ning Lang ◽  
Decheng Wang ◽  
Peng Cheng ◽  
Lingxiao Liu
Author(s):  
Feng Guo ◽  
Yu Qian ◽  
Dimitris Rizos ◽  
Zhi Suo ◽  
Xiaobin Chen

Rail surface defects have negative impacts on riding comfort and track safety, and could even lead to accidents. Based on the safety database (2020) of the Federal Railroad Administration (FRA), rail surface defects have been among the main factors causing derailments. During the past decades, there have been many efforts to detect such rail surface defects. However, the applications of earlier methods are limited by the high requirements of specialized equipment and personnel training. To date, rail surface defect inspection is still a very labor-intensive and time-consuming process, which hardly satisfies the field maintenance expectations. Therefore, a cost-effective and user-friendly automatic system that can inspect the rail surface defects with high accuracy is urgently needed. To address this issue, this study proposes a computer vision-based instance segmentation framework for rail surface defect inspection. A rail surface database including 1,040 images (260 source images and 780 augmented images) has been built. The classic instance segmentation model, Mask R-CNN, has been re-trained and fine-tuned for inspecting rail surface defects with the customized dataset. The influences of different backbones and learning rates are investigated and discussed. Experimental results indicate the ResNet101 backbone reaches better inspection capability. With a learning rate of 0.005, the re-trained Mask R-CNN model can achieve the best performance on the bounding box and mask predictions. Sixteen images are used to test the inspection performance of the fine-tuned model. The results are promising and indicate potential field applications in the future.


Author(s):  
Romina Dastoorian ◽  
Ahmad E. Elhabashy ◽  
Wenmeng Tian ◽  
Lee J. Wells ◽  
Jaime A. Camelio

With the latest advancements in three-dimensional (3D) measurement technologies, obtaining 3D point cloud data for inspection purposes in manufacturing is becoming more common. While 3D point cloud data allows for better inspection capabilities, their analysis is typically challenging. Especially with unstructured 3D point cloud data, containing coordinates at random locations, the challenges increase with higher levels of noise and larger volumes of data. Hence, the objective of this paper is to extend the previously developed Adaptive Generalized Likelihood Ratio (AGLR) approach to handle unstructured 3D point cloud data used for automated surface defect inspection in manufacturing. More specifically, the AGLR approach was implemented in a practical case study to inspect twenty-seven samples, each with a unique fault. These faults were designed to cover an array of possible faults having three different sizes, three different magnitudes, and located in three different locations. The results show that the AGLR approach can indeed differentiate between non-faulty and a varying range of faulty surfaces while being able to pinpoint the fault location. This work also serves as a validation for the previously developed AGLR approach in a practical scenario.


2020 ◽  
Vol 32 (15) ◽  
pp. 11229-11244
Author(s):  
Haiyong Chen ◽  
Qidi Hu ◽  
Baoshuo Zhai ◽  
He Chen ◽  
Kun Liu

Sign in / Sign up

Export Citation Format

Share Document