Abstract
Modeling and forecasting are among the most powerful and widely-used tools in decision support systems. The Fuzzy Linear Regression (FLR) is the most fundamental method in the fuzzy modeling area in which the uncertain relationship between the target and explanatory variables is estimated and has been frequently used in a broad range of real-world applications efficaciously. The operation logic in this method is to minimize the vagueness of the model, defined as the sum of individual spreads of the fuzzy coefficients. Although this process is coherent and can obtain the narrowest α-cut interval and exceptionally the most accurate results in the training data sets, it can not guarantee to achieve the desired level of generalization. While the quality of made managerial decisions in the modeling-based field is dependent on the generalization ability of the used method. On the other hand, the generalizability of a method is generally dependent on the precision as well as reliability of results, simultaneously. In this paper, a novel methodology is presented for the fuzzy linear regression modeling; in which in contrast to conventional methods, the constructed models' reliability is maximized instead of minimizing the vagueness. In the proposed model, fuzzy parameters are estimated in such a way that the variety of the ambiguity of the model is minimized in different data conditions. In other words, the weighted variance of different ambiguities in each validation data situation is minimized in order to estimate the unknown fuzzy parameters. To comprehensively assess the proposed method's performance, 74 benchmark datasets are regarded from the UCI. Empirical outcomes show that, in 64.86% of case studies, the proposed method has better generalizability, i.e., narrower α-cut interval as well as more accurate results in the interval and point estimation, than classic versions. It is obviously demonstrated the importance of the outcomes' reliability in addition to the precision that is not considered in the traditional FLR modeling processes. Hence, the presented EFLR method can be considered as a suitable alternative in fuzzy modeling fields, especially when more generalization is favorable.