scholarly journals Operating synchrotron light sources with a high gain free electron laser

2015 ◽  
Vol 17 (11) ◽  
pp. 113006 ◽  
Author(s):  
S Di Mitri ◽  
M Cornacchia
2016 ◽  
Vol 62 (2) ◽  
pp. 203-209
Author(s):  
Ryszard S. Romaniuk

Abstract Free electron laser FELs are built in Europe mainlyB as nondependent infrastructures, or as a development of synchrotron ones. They are constructed mainly in centres which have considerable experience with synchrotron light sources of the third generation like DESY, Trieste, INFN, etc. Advances in very energetically efficient superconducting linear accelerators for electron beams, like TESLA type, caused an abrupt development of FEL machines all over Europe. New generation of FELs emits light beam of extreme intensity, good parameters, in IR, VIS, UV, EUV and X-ray spectral regions. The machine construction teams comprise also of young active researchers from Poland. In particular, these is a considerable participation of M.Sc. and Ph.D. students from Warsaw University of Technology at building of FLASH I, FLASH II, and EXFEL machines. Unique experiences gathered at work with these large experiments result in development of these young teams, and their further engagement in new initiatives: laser, laser – accelerator, inertial, plasma, plasma – energy, etc. This is what we observe with satisfaction. However, due to the lack of large research infrastructures in Poland, we are not members of the infrastructure owner clubs. Our young researchers may take part in the initiatives only indirectly as members of cooperative teams from the leading countries. As a further consequence, there is also a confined access of Polish laser and accelerator researchers to some kinds of European infrastructure development projects now under realization within the H2020.


2018 ◽  
Vol 25 (5) ◽  
pp. 1323-1334 ◽  
Author(s):  
Simone Di Mitri

The last decade has seen a renaissance of machine-physics studies and technological advancements that aim to upgrade at least 15 synchrotron light sources worldwide to diffraction-limited storage rings. This is expected to improve the average spectral brightness and transversally coherent fraction of photons by several orders of magnitude in the soft- and hard-X-ray wavelength range, at the expense of pulse durations longer than ∼80 ps FWHM. This paper discusses the compatibility of schemes for the generation of sub-picosecond photon-pulse durations in synchrotron light sources with standard multi-bunch user operation and, in particular, diffraction-limited electron optics design. The question of this compatibility is answered taking into consideration the storage ring beam energy and the constraint of existing synchrotrons' infrastructure. An alternative scheme for the upgrade of medium-energy synchrotron light sources to diffraction-limited storage rings and the simultaneous production of picosecond-long photon pulses in a high-gain free-electron laser scheme are illustrated.


2020 ◽  
Vol 27 (4) ◽  
pp. 883-889 ◽  
Author(s):  
Takato Inoue ◽  
Satoshi Matsuyama ◽  
Jumpei Yamada ◽  
Nami Nakamura ◽  
Taito Osaka ◽  
...  

Ultimate focusing of an X-ray free-electron laser (XFEL) enables the generation of ultrahigh-intensity X-ray pulses. Although sub-10 nm focusing has already been achieved using synchrotron light sources, the sub-10 nm focusing of XFEL beams remains difficult mainly because the insufficient stability of the light source hinders the evaluation of a focused beam profile. This problem is specifically disadvantageous for the Kirkpatrick–Baez (KB) mirror focusing system, in which a slight misalignment of ∼300 nrad can degrade the focused beam. In this work, an X-ray nanobeam of a free-electron laser was generated using reflective KB focusing optics combined with speckle interferometry. The speckle profiles generated by 2 nm platinum particles were systematically investigated on a single-shot basis by changing the alignment of the multilayer KB mirror system installed at the SPring-8 Angstrom Compact Free-Electron Laser, in combination with computer simulations. It was verified that the KB mirror alignments were optimized with the required accuracy, and a focused vertical beam of 5.8 nm (±1.2 nm) was achieved after optimization. The speckle interferometry reported in this study is expected to be an effective tool for optimizing the alignment of nano-focusing systems and for generating an unprecedented intensity of up to 1022 W cm−2 using XFEL sources.


Sign in / Sign up

Export Citation Format

Share Document