scholarly journals Second-order matter density perturbations and skewness in scalar–tensor modified gravity models

2008 ◽  
Vol 2008 (09) ◽  
pp. 009 ◽  
Author(s):  
Takayuki Tatekawa ◽  
Shinji Tsujikawa
Entropy ◽  
2015 ◽  
Vol 17 (12) ◽  
pp. 6643-6662 ◽  
Author(s):  
Aimeric Colléaux ◽  
Sergio Zerbini

2020 ◽  
Vol 501 (1) ◽  
pp. 254-260
Author(s):  
Ali Rida Khalifeh ◽  
Raul Jimenez

ABSTRACT The discovery of 19 dwarf galaxies without dark matter (DM) provides, counterintuitively, strong support for the ΛCDM standard model of cosmology. Their presence is well accommodated in a scenario where the DM is in the form of cold dark particles. However, it is interesting to explore quantitatively what is needed from modified gravity models to accommodate the presence of these galaxies and what extra degree of freedom is needed in these models. To this end, we derive the dynamics at galaxy scales (Virial theorem) for a general class of modified gravity models. We distinguish between theories that satisfy the Jebsen–Birkhoff theorem, and those that do not. Our aim is to develop tests that can distinguish whether DM is part of the theory of gravity or a particle. The 19 dwarf galaxies discovered provide us with a stringent test for models of modified gravity. Our main finding is that there will always be an extra contribution to the Virial theorem coming from the modification of gravity, even if a certain galaxy shows very small, if not negligible, trace of DM, as has been reported recently. Thus, if these and more galaxies are confirmed as devoid (or negligible) of DM, while other similar galaxies have abundant DM, it seems interesting to find modifications of gravity to describe DM. Our result can be used by future astronomical surveys to put constraints on the parameters of modified gravity models at astrophysical scales where DM is described as such.


2009 ◽  
Vol 80 (10) ◽  
Author(s):  
Lam Hui ◽  
Alberto Nicolis ◽  
Christopher W. Stubbs

Sign in / Sign up

Export Citation Format

Share Document