gravitational constant
Recently Published Documents


TOTAL DOCUMENTS

658
(FIVE YEARS 151)

H-INDEX

44
(FIVE YEARS 5)

2022 ◽  
Vol 2022 (01) ◽  
pp. 015
Author(s):  
M. Bousder

Abstract The present work is devoted to studying the dynamical evolution of galaxies in scalar-Gauss-Bonnet gravity and its relationship with the MOND paradigm. This study is useful for giving meaning to the presence of a new gravitational constant. The stability of dark matter is strongly dependent on matter density. We are interested in calculating the maximum rotational velocity of galaxies. We show that rotating galaxies can be described by a new parameter that depends both on the minimum value of scalar fields and on the effective mass of this field. According to observational data, we have shown that this parameter is a constant.


2021 ◽  
pp. 1-2
Author(s):  
Yanbikov Vil'dyan Shavkyatovich ◽  

On the Basis of tabular values of the gravitational constant. The calculated mass of the Nucleus of the Milky Way galaxy. The numerical value of the gravitational constant is determined by the mass of the nucleus of the milky way galaxy


2021 ◽  
Author(s):  
Syed Sohail Ahmed

This model predicts the details of Origination (the Big Bang), Expansion, Contraction, Termination (the Big Crunch) and Repetition (the Big Loop) of Space – Time.It represents time as internally related to the system determined by the gravity. It gives the relationship between the speed of light and Gravitational constant.Further, Schwarzschild radius can be represented independently either of speed of light or Gravitational constant.The Gravitational Constant is directly proportional to Planck’s Length and inversely proportional to Planck’s Mass.It predicts the existence of the Multiverse or regions within the Universe.


2021 ◽  
Vol 34 (4) ◽  
pp. 517-528
Author(s):  
Olivier Pignard

The theory of the dynamic medium of reference has already been presented in several articles [Pignard, Phys. Essays 32, 422 (2019); 33, 395 (2020); 34, 61 (2021); 34, 279 (2021)], and in particular in Pignard, Phys. Essays 32, 422 (2019). The article [Pignard, Phys. Essays 34, 279 (2021)] gives an explanation and mathematical developments of the gravitational acceleration from atomic nuclei of a massive body. General relativity considers a massive body, like the Earth or the Sun, globally, macroscopically, simply as an object of mass M (which curves space‐time). However, when one goes into details, this mass M is made up of atoms which are themselves mainly made up of nuclei of nucleons (if we neglect the mass of electrons in comparison of that of the nucleus). Thus, it is mainly the nuclei of a massive body that create the force of gravity! The dynamic medium of reference theory determines the gravitational acceleration microscopically by taking into account all the atomic nuclei that make up a massive body [Pignard, Phys. Essays 32, 422 (2019)]. This creates a strong link between gravity and the nuclear domain. This article goes further with the description of a model of the atomic nucleus. This makes it possible to establish that the strong force or nuclear force, which ensures the cohesion of the nucleus, is due to the strong acceleration of the flux of the medium which is a vector average of the flux of gravitons. This gives an expression of the nuclear force similar to the force of gravity but with a constant K ≈ 1031 m s−2, much higher than the gravitational constant G. This article shows that the functioning, the mechanism of the nucleus, makes it possible to explain the nuclear force and also to find the gravitational acceleration. From there, it is deduced that the photons are deflected by the strong acceleration due to an atom nucleus. They are also slowed down by an atom nucleus which creates a delay in their travel time which we call the nuclear time delay of light. Finally, an experiment is proposed to verify the phenomenon of nuclear deflection of light and the nuclear time delay of light.


2021 ◽  
Vol 3 (6) ◽  
pp. 15-20
Author(s):  
Espen Gaarder Haug

We demonstrate how one can extract the Planck length from ball with a built-in stopwatch without knowledge of the Newtonian gravitational constant or the Planck constant. This could be of great importance since until recently it has been assumed the Planck length not can be found without knowledge of Newton’s gravitational constant. This method of measuring the Planck length should also be of great interest to not only physics researchers but also to physics teachers and students as it conveniently demonstrates that the Plank length is directly linked to gravitational phenomena, not only theoretically, but practically. To demonstrate that this is more than a theory we report 100 measurements of the Planck length using this simple approach. We will claim that, despite the mathematical and experimental simplicity, our findings could be of great importance in better understanding the Planck scale, as our findings strongly support the idea that to detect gravity is to detect the effects from the Planck scale indirectly.


2021 ◽  
Author(s):  
Andrey Chernov

Abstract This study introduces scientific concepts such as gravitational cells and gravitational strings. Gravitational cells and gravitational strings have been organically built into the concept of a gravitational field. This innovation has led to significant scientific results. These results include obtaining the formula for the gravitational constant, the formula for the electron mass, the formula for the mass of the hydrogen atom, the formula for the minimum distance of the action of the gravitational field, etc. All formulas were confirmed by experimental data. In this work, the Planck formula was successfully applied to the gravitational field. A distinctive feature of this study is the fact that most of the new formulas contain only fundamental physical constants (without introducing additional indicators and proportionality coefficients). In this work, the concept of a gravitational quantum is introduced and its value is determined. Also, a new physical constant was obtained - the mass of the gravitational cell of a black hole.


2021 ◽  
Author(s):  
Andrey Chernov

Abstract This study introduces scientific concepts such as gravitational cells and gravitational strings. Gravitational cells and gravitational strings have been organically built into the concept of a gravitational field. This innovation has led to significant scientific results. These results include obtaining the formula for the gravitational constant, the formula for the electron mass, the formula for the mass of the hydrogen atom, the formula for the minimum distance of the action of the gravitational field, etc. All formulas were confirmed by experimental data. In this work, the Planck formula was successfully applied to the gravitational field. A distinctive feature of this study is the fact that most of the new formulas contain only fundamental physical constants (without introducing additional indicators and proportionality coefficients). In this work, the concept of a gravitational quantum is introduced and its value is determined. Also, a new physical constant was obtained - the mass of the gravitational cell of a black hole.


2021 ◽  
Author(s):  
Andrey Chernov

Abstract This study introduces scientific concepts such as gravitational cells and gravitational strings. Gravitational cells and gravitational strings have been organically built into the concept of a gravitational field. This innovation has led to significant scientific results. These results include obtaining the formula for the gravitational constant, the formula for the electron mass, the formula for the mass of the hydrogen atom, the formula for the minimum distance of the action of the gravitational field, etc. All formulas were confirmed by experimental data. In this work, the Planck formula was successfully applied to the gravitational field. A distinctive feature of this study is the fact that most of the new formulas contain only fundamental physical constants (without introducing additional indicators and proportionality coefficients). In this work, the concept of a gravitational quantum is introduced and its value is determined. Also, a new physical constant was obtained - the mass of the gravitational cell of a black hole.


2021 ◽  
Author(s):  
Andrey Chernov

Abstract In this work, for the first time, it was possible to build into the gravitational field such concepts as gravitational cells and gravitational strings. This made it possible to obtain such scientific results as the formula for the gravitational constant, the formula for the proportion between the mass-energy of the electron and the proton, the formula for the hydrogen atom, the formula for the gravitational quantum, etc. These formulas were fully confirmed by experimental data. In this study, Planck's formula was successfully embedded in the gravitational field, resulting in significant scientific results. In this work, the concept of a gravitational quantum is introduced and its value is determined. Also, a new physical constant was obtained - the mass of the gravitational cell of a black hole.


Author(s):  
Ian Clague

A deep relationship is identified between the Coulomb Force and Gravity. A gravitational constant for strong gravity is calculated from the relationship. The equivalence between mass and charge is explored. Implications are given for the expansion of Einstein's Field Equations to include vector gravity.


Sign in / Sign up

Export Citation Format

Share Document