Quantum properties near the instability boundary in optomechanical system

2021 ◽  
Author(s):  
Han Hao Fang ◽  
Zhi Jiao Deng ◽  
Zhigang Zhu ◽  
Yan Li Zhou

Abstract The properties of the system near the instability boundary are very sensitive to external disturbances, which is important for amplifying some physical effects or improving the sensing accuracy. In this paper, the quantum properties near the instability boundary in a simple optomechanical system has been studied by numerical simulations. Calculations show that the transitional region connecting the Gaussian states and the Ring states when crossing the boundary is sometimes different from the region centered on the boundary line, but it is more essential. The change of the mechanical Wigner function in the transitional region directly reflects its bifurcation behavior in classical dynamics. Besides, quantum properties such as mechanical second-order coherence function and optomechanical entanglement, can be used to judge the corresponding bifurcation types and estimate the parameter width and position of the transitional region. The non-Gaussian transitional states exhibit strong entanglement robustness, and the transitional region as a boundary ribbon can be expected to replace the original classical instability boundary line in future applications.

2021 ◽  
Vol 18 (6) ◽  
pp. 8499-8523
Author(s):  
Weijie Wang ◽  
◽  
Shaoping Wang ◽  
Yixuan Geng ◽  
Yajing Qiao ◽  
...  

<abstract><p>Plasma glucose concentration (PGC) and plasma insulin concentration (PIC) are two essential metrics for diabetic regulation, but difficult to be measured directly. Often, PGC and PIC are estimated from continuous glucose monitoring and insulin delivery data. Nevertheless, the inter-individual variability and external disturbance (e.g. carbohydrate intake) bring challenges for accurate estimations. This study is to estimate PGC and PIC adaptively by identifying personalized parameters and external disturbances. An observable glucose-insulin (OGI) dynamic model is established to describe insulin absorption, glucose regulation, and glucose transport. The model parameters and disturbances can be extended to observable state variables and be identified dynamically by Bayesian filtering estimators. Two basic Gaussian noise based Bayesian filtering estimators, extended Kalman filtering (EKF) and unscented Kalman filtering (UKF), are implemented. Recognizing the prevalence of non-Gaussian noise, in this study, two new filtering estimators: particle filtering with Gaussian noise (PFG), and particle filtering with mixed non-Gaussian noise (PFM) are designed and implemented. The proposed OGI model in conjunction with the estimators is evaluated using the data from 30 in-silico subjects and 10 human participants. For in-silico subjects, the OGI with PFM estimator has the ability to estimate PIC and PGC adaptively, achieving RMSE of PIC $ 9.49\pm3.81 $ mU/L, and PGC $ 0.89\pm0.19 $ mmol/L. For human, the OGI with PFM has the promise to identify disturbances ($ 95.46\%\pm0.65\% $ accurate rate of meal identification). OGI model provides a way to fully personalize the parameters and external disturbances in real time, and has potential clinical utility for artificial pancreas.</p></abstract>


2019 ◽  
Vol 19 (11&12) ◽  
pp. 935-951
Author(s):  
Hamza Adnane ◽  
Matteo G.A. Paris

We address de-Gaussification of continuous variables Gaussian states by optimal non-deterministic noiseless linear amplifier (NLA) and analyze in details the properties of the amplified states. In particular, we investigate the entanglement content and the non-Gaussian character for the class of non-Gaussian entangled state obtained by using NL-amplification of two-mode squeezed vacua (twin-beam, TWB). We show that entanglement always increases, whereas improved EPR correlations are observed only when the input TWB has low energy. We then examine a Braunstein-Kimble-like protocol for the teleportation of coherent states, and compare the performances of TWB-based teleprotation with those obtained using NL-amplified resources. We show that teleportation fidelity and security may be improved for a large range of NLA parameters (gain and threshold).


Author(s):  
Xiaoyan Wang ◽  
Siyang Huang ◽  
Wenxi Tian ◽  
Lie Chen ◽  
Suizheng Qiu ◽  
...  

In order to study the effect of rolling motion on flow instability of parallel rectangular channels of natural circulation, the natural circulation reactor simulation system is used for physical prototype. And theory analysis model of parallel rectangular channels of natural circulation system under rolling motion is established and coded by Fortran. The results of the program are verified to the experiments, and the results are in good agreement. The flow instability boundaries of different pressure under static and rolling motion are calculated respectively. The results show that: 1) under static condition, with the increase of the pressure, the instability boundary line changes, and the system becomes more stable; 2) under rolling conditions, the heating power of instability boundary decreases comparing to the stable conditions. The instability occurs earlier; 3) the stability of the system decreases with the increasing of rolling amplitude and frequency.


2011 ◽  
Author(s):  
H. Benichi ◽  
N. Lee ◽  
S. Takeda ◽  
A. Furusawa ◽  
Timothy Ralph ◽  
...  
Keyword(s):  

2018 ◽  
Vol 390 ◽  
pp. 245-302 ◽  
Author(s):  
Tao Shi ◽  
Eugene Demler ◽  
J. Ignacio Cirac

Sign in / Sign up

Export Citation Format

Share Document