optomechanical system
Recently Published Documents


TOTAL DOCUMENTS

588
(FIVE YEARS 170)

H-INDEX

36
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Zhi-Xu Zhang ◽  
Lu Qi ◽  
Wen-Xue Cui ◽  
Shou Zhang ◽  
Hong-Fu Wang

Abstract We investigate the topological phase transition and the enhanced topological effect in cavity optomechanical system with periodical modulation. By calculating the steady-state equations of the system, the steady-state conditions of cavity fields and the restricted conditions of effective optomechanical couplings are demonstrated. It is found that the cavity optomechanical system can be modulated to different topological Su-Schrieffer-Heeger (SSH) phases via designing the optomechanical couplings legitimately. Meanwhile, combining the effective optomechanical couplings and the probability distributions of gap states, we reveal the topological phase transition between trivial SSH phase and nontrivial SSH phase via adjusting the decay rates of cavity fields. Moreover, we find that the enhanced topological effect of gap states can be achieved by enlarging the size of system and adjusting the decay rates of cavity fields.


2022 ◽  
pp. 2100421
Author(s):  
Shi‐Lei Chao ◽  
Da‐Wei Wang ◽  
Zhen Yang ◽  
Cheng‐Song Zhao ◽  
Rui Peng ◽  
...  

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Qing He ◽  
Fazal Badshah ◽  
Yanlai Song ◽  
Lianbei Wang ◽  
Erjun Liang ◽  
...  

2021 ◽  
pp. 2100359
Author(s):  
Jun‐Hao Liu ◽  
Ya‐Fei Yu ◽  
Jin‐Dong Wang ◽  
Zhi‐Ming Zhang

2021 ◽  
pp. 1-11
Author(s):  
Mehrad Gavahi ◽  
Hong Rong Li

In this work, a model of optomechanical system was investigated by analyzing the entanglement dynamics of two related mechanical oscillators in a modified system. Geometrical shapes effects of optical cavities on entanglement of a representative optomechanical system were investigated by means of performing numerical analysis. It was signified that the steady-state or the dynamic behavior of optomechanical engagement could be created owing to the strength of mechanical pairs, which are strong towards the oscillating temperature. In addition, the mentioned entanglement dynamics were seen to be entirely related to the natural state’s stability. Furthermore, rendering the mechanical damping effects, the critical mechanical coupling strength-related analytical expression, where the transition from a steady state to a dynamic clamp occurs, was reported. In the studied system, two identical mechanical oscillators were formed in different conditions of the optical cavities shapes.


2021 ◽  
Author(s):  
Deng-Wei Zhang ◽  
Shang-Wu Bin ◽  
Cai You ◽  
Chang-Sheng Hu

Author(s):  
Surabhi Yadav ◽  
Aranya B Bhattacherjee

We propose to achieve quantum optical nonreciprocity in a hybrid qubit-optomechanical solid-state system. A two-level system (qubit) is coupled to a mechanically compliant mirror (via the linear Jaynes–Cummings interaction) placed in the middle of a solid-state optical cavity. We show for the first time that the generated optical bistability exhibits a bi-directional photonic switch, making the device a suitable candidate for a duplex communication system. On further exploring the fluctuation dynamics of the system, we found that the proposed device breaks the symmetry between forward and backward propagating optical modes (optical nonreciprocity), which can be controlled by tuning the various system parameters, including the qubit, which emerges as a new handle. The device thus behaves like an optical isolator and hence can store optical data in the acoustic mode, which can be retrieved later.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 588
Author(s):  
Lingchao Li ◽  
Jian-Qi Zhang

The optomechanics shows a great potential in quantum control and precise measurement due to appropriate mechanical control. Here we theoretically study the quantum phase transition in a hybrid atom-optomechanical cavity with an external force. Our study shows, in the thermodynamic limit, the critical value of quantum phase transition between the normal phase and super-radiant phase can be controlled and modified by the external force via the tunable frequency of optomechanics, then a force dependent quantum phase transition can be achieved in our system. Moreover, this force dependent quantum phase transition can be employed to detect the external force variation. In addition, our numerical simulations illustrate the sensitivity of the external force measurement can be improved by the squeezing properties of the quantum phase transition.


Sign in / Sign up

Export Citation Format

Share Document