Structured large-pore foams improve thermal performance of LiMIT-style liquid lithium PFC

2021 ◽  
Author(s):  
Matthew Szott ◽  
Steven Stemmley ◽  
Cody D Moynihan ◽  
Alfonso de Castro ◽  
David N Ruzic

Abstract As magnetically confined fusion devices improve, the conditions at the walls become increasingly intense. Plasma facing components (PFCs) must withstand these extreme heat and particle loads without damage or degradation. Liquid lithium PFCs are known to be quite resilient, and the presence of lithium also serves to improve plasma properties. The Liquid Metal Infused Trench (LiMIT) concept is an open surface liquid lithium PFC design that has been tested extensively at the University of Illinois and in fusion devices around the world. LiMIT utilizes thermoelectric magnetohydrodynamics (TEMHD) to passively drive liquid lithium flow. This work demonstrates an extension of the LiMIT trench geometry to 3 dimensions. Additively manufactured large pore metallic foams maintain TEMHD drive while drastically improving heat flux handling and resistance to lithium dryout, a phenomenon where locally high TEMHD forces depresses the lithium level and exposes underlying solid structure. COMSOL Multiphysics modeling of the system yields insight into the forces at play in dryout development, and shows the 3-D structures can eliminate dryout. Low heat proof-of-concept experimental testing of the system matches computational results, and high heat flux electron beam tests more than double the proven operational range of a LiMIT-style PFC, to 6.8 MW/m2, with no indications of dryout or impending damage.

2016 ◽  
Vol 112 ◽  
pp. 93-101 ◽  
Author(s):  
M.A. Jaworski ◽  
A. Brooks ◽  
R. Kaita ◽  
N. Lopes-Cardozo ◽  
J. Menard ◽  
...  

Author(s):  
Andrei Khodak ◽  
Douglas Loesser ◽  
Michael Messineo ◽  
Arthur Brooks ◽  
Michael Jaworski ◽  
...  

1992 ◽  
Vol 196-198 ◽  
pp. 596-601 ◽  
Author(s):  
J. Gilligan ◽  
M. Bourham ◽  
O. Hankins ◽  
W. Eddy ◽  
J. Hurley ◽  
...  

Nukleonika ◽  
2015 ◽  
Vol 60 (2) ◽  
pp. 285-288 ◽  
Author(s):  
Yashashri Patil ◽  
S. Khirwadkar ◽  
S. M. Belsare ◽  
Rajamannar Swamy ◽  
M. S. Khan ◽  
...  

Abstract This paper is focused on various aspects of the development and testing of water cooled divertor PFCs. Divertor PFCs are mainly designed to absorb the heat and particle fluxes outflowing from the core plasma of fusion devices like ITER. The Divertor and First Wall Technology Development Division at the Institute for Plasma Research (IPR), India, is extensively working on development and testing of divertor plasma facing components (PFCs). Tungsten and graphite macro-brush type test mock-ups were produced using vacuum brazing furnace technique and tungsten monoblock type of test mock-ups were obtained by hot radial pressing (HRP) technique. Heat transfer performance of the developed test mock-ups was tested using high heat flux tests with different heat load conditions as well as the surface temperature monitoring using transient infrared thermography technique. Recently we have established the High Heat Flux Test Facility (HHFTF) at IPR with an electron gun EH300V (M/s Von Ardenne Anlagentechnik GmbH, Germany) having maximum power 200 kW. Two tungsten monoblock type test mock-ups were probed using HHFTF. Both of the test mock-ups successfully sustained 316 thermal cycles during high heat flux (HHF) tests. The test mock-ups were non-destructively tested using infrared thermography before and after the HHF tests. In this note we describe the detailed procedure used for testing macro-brush and monoblock type test mock-ups using in-house transient infrared thermography set-up. An acceptance criteria limit was defined for small scale macro-brush type of mock-ups using DTrefmax value and the surface temperature measured during the HHF tests. It is concluded that the heat transfer behavior of a plasma facing component was checked by the HHF tests followed by transient IR thermography. The acceptance criteria DTrefmax limit for a graphite macro-brush mock-up was found to be ~3°C while for a tungsten macro-brush mock-up it was ~5°C.


2001 ◽  
Vol 56-57 ◽  
pp. 285-290 ◽  
Author(s):  
F Escourbiac ◽  
P Chappuis ◽  
J Schlosser ◽  
M Merola ◽  
I Vastra ◽  
...  

Author(s):  
K. Nakamura ◽  
M. Akiba ◽  
S. Suzuki ◽  
K. Satoh ◽  
K. Yokoyama ◽  
...  

2007 ◽  
Vol 82 (15-24) ◽  
pp. 1730-1738 ◽  
Author(s):  
F. Escourbiac ◽  
A. Durocher ◽  
A. Grosman ◽  
F. Cismondi ◽  
X. Courtois ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document