plasma properties
Recently Published Documents


TOTAL DOCUMENTS

518
(FIVE YEARS 104)

H-INDEX

35
(FIVE YEARS 5)

Author(s):  
Yuanfu Yue ◽  
Vighneswara Siva Santosh Kumar Kondeti ◽  
Nader Sadeghi ◽  
Peter Bruggeman

Abstract While plasma-liquid interactions have been an important focus in the plasma research community, the impact of the strong coupling between plasma and liquid on plasma properties and processes remains not fully understood. In this work, we report on the impact of the applied voltage, pulse width and liquid conductivity on the plasma morphology and the OH generation for a positive pulsed DC atmospheric pressure plasma jet with He-0.1% H2O mixture interacting with a liquid cathode. We adopted diagnostic techniques of fast imaging, 2D laser induced fluorescence (LIF) of OH and Thomson scattering spectroscopy. We show that plasma instabilities and enhanced evaporation occur and have a significant impact on the OH generation. At elevated plasma energies, it is found that the plasma contracts due to a thermal instability through Ohmic heating and the contraction coincides with a depletion in the OH density in the core due to electron impact dissociation. For lower plasma energies, the instability is suppressed/delayed by the equivalent series resistor of the liquid electrode. An estimation of the energy flux from the plasma to the liquid shows that the energy flux of the ions released into the liquid by positive ion hydration is dominant, and significantly larger than the energy needed to evaporate sufficient amount of water to account for the measured H2O concentration increase near the plasma-liquid interface.


2022 ◽  
Vol 9 ◽  
Author(s):  
Donato Coviello ◽  
Antonio D’Angola ◽  
Donato Sorgente

Keyhole laser welding is the benchmark for deep-penetration joining processes. It needs high incident laser beam power densities at the workpiece surface to take place. The gaseous phase plays a fundamental role to keep the deep and narrow keyhole cavity open during the process. The plasma created in this process is a mixture of ionized metal vapors and the environmental gas and it develops inside the keyhole (keyhole plasma) and above the workpiece surface (plasma plume). The presence of plasma implicates absorption, scattering, and refraction of laser beam rays. These phenomena alter the power density of the laser beam irradiating the workpiece surface and thus affect the resulting welding process. In this work, a mathematical and numerical model has been developed to calculate the keyhole shape taking into account the plasma absorption effects. The model considers the keyhole walls as the liquid-vapor interface and computes the keyhole geometry applying a local energy balance at this interface. In addition, the model takes into account the multiple reflections effects inside the cavity through an iterative ray-tracing technique, and calculates the absorption mechanism due to inverse Bremsstrahlung for each ray along its segmented path inside the keyhole. Results show the effect of plasma properties on the keyhole shape and depth.


2022 ◽  
Vol 17 (01) ◽  
pp. C01023
Author(s):  
A.Y. Yashin ◽  
V.V. Bulanin ◽  
V.K. Gusev ◽  
V.B. Minaev ◽  
A.V. Petrov ◽  
...  

Abstract Doppler backscattering (DBS) was successfully previously used on the Globus-M tokamak. The diagnostic was utilised in the form of either a single-frequency or a four-frequency dual homodyne system. It was used primarily for the study of zonal flows, filaments and Alfvén eigenmodes. These phenomena are worth being studied both on the periphery and in the core region of the plasma in a tokamak. For this specific reason two multifrequency DBS systems were installed on the upgraded Globus-M2 tokamak. The first four-frequency system with dual homodyne detection had already been used on the Globus-M tokamak and has lower probing frequencies which provide measurements from the periphery plasma. The second and new six-frequency DBS system was installed with a non-linear transmission line that was adapted to generate probing signals at frequencies 50, 55, 60, 65, 70 and 75 GHz. In general, the range of probing frequencies corresponds to the region of critical plasma densities from 5 × 1018 to 7 × 1019 m−3 at normal incidence. The pyramidal horn antennas are located inside the vacuum vessel with a special cardan-like rotator outside the camera so as to tilt antennas in the toroidal and poloidal directions. A previously developed code was applied to simulate 3D raytracing for all frequency channels. Calculations were carried out for different angles of incidence and for different electron density distributions in order to investigate the possibilities of the implementation of radial and poloidal correlation Doppler reflectometry. Examples of the DBS system application for study of plasma properties in the Globus-M2 tokamak are presented.


2022 ◽  
Vol 924 (2) ◽  
pp. L33
Author(s):  
C. Cattell ◽  
A. Breneman ◽  
J. Dombeck ◽  
E. Hanson ◽  
M. Johnson ◽  
...  

Abstract Using the Parker Solar Probe FIELDS bandpass-filter data and SWEAP electron data from Encounters 1 through 9, we show statistical properties of narrowband whistlers from ∼16 R s to ∼130 R s, and compare wave occurrence to electron properties including beta, temperature anisotropy, and heat flux. Whistlers are very rarely observed inside ∼28 R s (∼0.13 au). Outside 28 R s, they occur within a narrow range of parallel electron beta from ∼1 to 10, and with a beta-heat flux occurrence consistent with the whistler heat flux fan instability. Because electron distributions inside ∼30 R s display signatures of the ambipolar electric field, the lack of whistlers suggests that the modification of the electron distribution function associated with the ambipolar electric field or changes in other plasma properties must result in lower instability limits for the other modes (including the observed solitary waves and ion acoustic waves) that are observed close to the Sun. The lack of narrowband whistler-mode waves close to the Sun and in regions of either low (<0.1) or high (>10) beta is also significant for the understanding and modeling of the evolution of flare-accelerated electrons and the regulation of heat flux in astrophysical settings including other stellar winds, the interstellar medium, accretion disks, and the intragalaxy cluster medium.


Author(s):  
A.V. Dukhov ◽  
A.A. Romanov ◽  
M.N. Erofeev ◽  
I.N. Kravchenko ◽  
A.V. Nikolaev

The development and study of new mechanisms of a parallel structure ensuring the constancy of the point of instrument entry into the working area is an urgent task of surgery and scientific medicine. A structural synthesis of a parallel structure mechanism designed for robotic laparoscopic surgery has been performed. The proposed mechanism is equipped with arcuate guides with slots installed on the base perpendicular to each other. At the intersection of the slots, there is a bushing through which a straight shaft connected to the output link moves linearly. This arrangement provides a constant entry point, which allows the developed mechanism to be used in laparoscopic surgery and studies of plasma properties. For this mechanism, the inverse problem of positions has been solved, the working area has been determined, and a 3D model has been developed.


Author(s):  
Kyung Sun Park

We performed high-resolution three-dimensional global MHD simulations to determine the impact of weak southward interplanetary magnetic field (IMF) (Bz = −2 nT) and slow solar wind to the Earth’s magnetosphere and ionosphere. We considered two cases of differing, uniform time resolution with the same grid spacing simulation to find any possible differences in the simulation results. The simulation results show that dayside magnetic reconnection and tail reconnection continuously occur even during the weak and steady southward IMF conditions. A plasmoid is generated on closed plasma sheet field lines. Vortices are formed in the inner side of the magnetopause due to the viscous-like interaction, which is strengthened by dayside magnetic reconnection. We estimated the dayside magnetic reconnection which occurred in relation to the electric field at the magnetopause and confirmed that the enhanced electric field is caused by the reconnection and the twisted structure of the electric field is due to the vortex. The simulation results of the magnetic field and the plasma properties show quasi-periodic variations with a period of 9–11 min between the appearances of vortices. Also the peak values of the cross-polar cap potential are both approximately 50 kV, the occurrence time of dayside reconnections are the same, and the polar cap potential patterns are the same in both cases. Thus, there are no significant differences in outcome between the two cases.


2021 ◽  
Author(s):  
Tamara Andreeva ◽  
Joachim Geiger ◽  
Andreas Dinklage ◽  
Glen A Wurden ◽  
H Thomsen ◽  
...  

Abstract Wendelstein 7-X (Greifswald, Germany) is an advanced stellarator, which uses the modular coil concept to realize a magnetic configuration optimized for fusion-relevant plasma properties. The magnet system of the machine allows a variation of the rotational transform (iota) at the boundary. In the latest Wendelstein 7-X operational phase a dedicated configuration scan has been performed varying the rotational transform between magnetic configurations with iota=5/4 and iota=5/5 at the boundary. This paper presents an overview of the experiments and of the main results with respect to confinement and stability. The main observation is an increase of the plasma energy in several intermediate configurations of the scan when the 5/5-islands are close to the plasma boundary but still inside the last-closed-flux-surface. In addition, these configurations showed marked MHD-activity with a crashing behavior related to the 5/5-islands. The corresponding mode amplitude was correlated with the size of the internal 5/5 islands.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7336
Author(s):  
Stefan Andrei Irimiciuc ◽  
Sergii Chertopalov ◽  
Michal Novotný ◽  
Valentin Craciun ◽  
Jan Lancok

The dynamics of transient plasma generated by UV ns-laser ablation of selected metals (Co, Cu, Ag, Bi) were investigated by the Langmuir Probe method in angle- and time-resolved modes. Multiple ionic and electronic structures were seen for all plasmas with some corresponding to anions or nanoparticle-dominated structures. The addition of an Ar atmosphere energetically confined the plasma and increased the charge density by several orders of magnitude. For pressure ranges exceeding 0.5 Pa fast ions were generated in the plasma as a result of Ar ionization and acceleration in the double layer defining the front of the plasma plume. Several correlations between the target nature plasma properties were attempted. The individual plasma structure expansion velocity increases with the melting point and decreases with the atomic mass while the corresponding charged particle densities decrease with the melting point, evidencing the relationship between the volatility of the sample and the overall abated mass.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Andre Melzer ◽  
H. Krüger ◽  
D. Maier ◽  
S. Schütt

AbstractIn this review, we summarize recent advances in the field of dusty plasmas at strong magnetic fields. Special emphasis is put on situations where experimental laboratory observations are available. These generally comprise dusty plasmas with magnetized electrons and ions, but unmagnetized dust. The fundamental parameters characterizing a magnetized (dusty) plasma are given and various effects in dusty plasmas under magnetic fields are presented. As examples, the reaction of the dust component to magnetic-field modified plasma properties, such as filamentation, imposed structures, dust rotation, nanodusty plasmas and the resulting forces on the dust are discussed. Further, the behavior of the dust charge is described and shown to be relatively unaffected by magnetic fields. Wake field formation in magnetized discharges is illustrated: the strength of the wake field is found to be reduced with increased magnetic field. The propagation of dust acoustic waves in magnetized dusty plasmas is experimentally measured and analyzed indicating that the wave dynamics are not heavily influenced by the magnetic field. Only at the highest fields ($$B> 1$$ B > 1  T) the wave activity is found to be reduced. Moreover, it is discussed how dust-cyclotron waves might be used to indicate a magnetized dust component. Finally, implications of a magnetized dusty plasma are illustrated.


Sign in / Sign up

Export Citation Format

Share Document