scholarly journals Deep Neural Networks for Physics Analysis on low-level whole-detector data at the LHC

2018 ◽  
Vol 1085 ◽  
pp. 042034 ◽  
Author(s):  
Wahid Bhimji ◽  
Steven Andrew Farrell ◽  
Thorsten Kurth ◽  
Michela Paganini ◽  
Prabhat ◽  
...  
2017 ◽  
Author(s):  
B. B. Bankson ◽  
M.N. Hebart ◽  
I.I.A. Groen ◽  
C.I. Baker

AbstractVisual object representations are commonly thought to emerge rapidly, yet it has remained unclear to what extent early brain responses reflect purely low-level visual features of these objects and how strongly those features contribute to later categorical or conceptual representations. Here, we aimed to estimate a lower temporal bound for the emergence of conceptual representations by defining two criteria that characterize such representations: 1) conceptual object representations should generalize across different exemplars of the same object, and 2) these representations should reflect high-level behavioral judgments. To test these criteria, we compared magnetoencephalography (MEG) recordings between two groups of participants (n = 16 per group) exposed to different exemplar images of the same object concepts. Further, we disentangled low-level from high-level MEG responses by estimating the unique and shared contribution of models of behavioral judgments, semantics, and different layers of deep neural networks of visual object processing. We find that 1) both generalization across exemplars as well as generalization of object-related signals across time increase after 150 ms, peaking around 230 ms; 2) behavioral judgments explain the most unique variance in the response after 150 ms. Collectively, these results suggest a lower bound for the emergence of conceptual object representations around 150 ms following stimulus onset.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2262
Author(s):  
Haneol Jang ◽  
Jong-Uk Hou

Traditionally, digital image forensics mainly focused on the low-level features of an image, such as edges and texture, because these features include traces of the image’s modification history. However, previous methods that employed low-level features are highly vulnerable, even to frequently used image processing techniques such as JPEG and resizing, because these techniques add noise to the low-level features. In this paper, we propose a framework that uses deep neural networks to detect image manipulation based on contextual abnormality. The proposed method first detects the class and location of objects using a well-known object detector such as a region-based convolutional neural network (R-CNN) and evaluates the contextual scores according to the combination of objects, the spatial context of objects and the position of objects. Thus, the proposed forensics can detect image forgery based on contextual abnormality as long as the object can be identified even if noise is applied to the image, contrary to methods that employ low-level features, which are vulnerable to noise. Our experiments showed that our method is able to effectively detect contextual abnormality in an image.


i-Perception ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 204166952092509
Author(s):  
Christoph Redies

In recent years, there has been an increasing number of studies on objective image properties in visual artworks. Little is known, however, about how these image properties emerge while artists create their artworks. In order to study this matter, I produced five colored abstract artworks by myself and recorded state images at all stages of their creation. For each image, I then calculated low-level features from deep neural networks, which served as a model of responses properties in visual cortex. Two-dimensional plots of variances that were derived from these features showed that the drawings differ greatly at early stages of their creation, but then follow a narrow common path to terminate at or close to a position where traditional paintings cluster in the plots. Whether other artists use similar perceptive strategies while they create artworks remains to be studied.


2018 ◽  
Author(s):  
Astrid Zeman ◽  
J Brendan Ritchie ◽  
Stefania Bracci ◽  
Hans Op de Beeck

Author(s):  
Alex Hernández-García ◽  
Johannes Mehrer ◽  
Nikolaus Kriegeskorte ◽  
Peter König ◽  
Tim C. Kietzmann

2018 ◽  
Author(s):  
Chi Zhang ◽  
Xiaohan Duan ◽  
Ruyuan Zhang ◽  
Li Tong

Sign in / Sign up

Export Citation Format

Share Document