scholarly journals Reduced order models for wind turbine blades with large deflections

2020 ◽  
Vol 1618 ◽  
pp. 052046
Author(s):  
Ozan Gözcü ◽  
Suguang Dou
2021 ◽  
Vol 2018 (1) ◽  
pp. 012042
Author(s):  
Vasileios Tsiolakis ◽  
Trond Kvamsdal ◽  
Adil Rasheed ◽  
Eivind Fonn ◽  
Harald van Brummelen

2020 ◽  
Vol 66 (9) ◽  
pp. 523-533
Author(s):  
Andres Lopez-Lopez ◽  
Jose Billerman Robles-Ocampo ◽  
Perla Yazmin Sevilla-Camacho ◽  
Orlando Lastres-Danguillecourt ◽  
Jesús Muniz ◽  
...  

Wind turbine blades are designed to be thin and flexible elements. Because unstable dynamic behaviour can affect the life of the rotor, it is crucial to understand the instability of non-linear behaviour caused by large deflections. The present study undertakes both a stability analysis of the non-linear response and an experimental validation of a simplified model for a wind turbine blade based on a cantilever beam. The model is formulated taking into account large geometric deflections and assuming a Galerkin approach. The model is validated experimentally in a wind tunnel with aluminium beams of differing geometry. Analysis of the dynamic response using phase planes reveals that the degree of instability is related to the amplitude of the excitation and the stiffness characteristics.


2009 ◽  
Vol 129 (5) ◽  
pp. 689-695
Author(s):  
Masayuki Minowa ◽  
Shinichi Sumi ◽  
Masayasu Minami ◽  
Kenji Horii

2021 ◽  
Author(s):  
Aileen G. Bowen Perez ◽  
Giovanni Zucco ◽  
Paul Weaver

Author(s):  
Salete Alves ◽  
Luiz Guilherme Vieira Meira de Souza ◽  
Edália Azevedo de Faria ◽  
Maria Thereza dos Santos Silva ◽  
Ranaildo Silva

Sign in / Sign up

Export Citation Format

Share Document