scholarly journals Wau: A User Authentication System Based on Channel State Information and Deep Neural Networks

2021 ◽  
Vol 1748 ◽  
pp. 032019
Author(s):  
Zhengjie Wang ◽  
Wenwen Dou ◽  
Zehua Huang ◽  
Chengming Zhang ◽  
Da Chen
2018 ◽  
Vol 14 (10) ◽  
pp. 155014771880671 ◽  
Author(s):  
Tao Li ◽  
Hai Wang ◽  
Yuan Shao ◽  
Qiang Niu

With the rapid growth of indoor positioning requirements without equipment and the convenience of channel state information acquisition, the research on indoor fingerprint positioning based on channel state information is increasingly valued. In this article, a multi-level fingerprinting approach is proposed, which is composed of two-level methods: the first layer is achieved by deep learning and the second layer is implemented by the optimal subcarriers filtering method. This method using channel state information is termed multi-level fingerprinting with deep learning. Deep neural networks are applied in the deep learning of the first layer of multi-level fingerprinting with deep learning, which includes two phases: an offline training phase and an online localization phase. In the offline training phase, deep neural networks are used to train the optimal weights. In the online localization phase, the top five closest positions to the location position are obtained through forward propagation. The second layer optimizes the results of the first layer through the optimal subcarriers filtering method. Under the accuracy of 0.6 m, the positioning accuracy of two common environments has reached, respectively, 96% and 93.9%. The evaluation results show that the positioning accuracy of this method is better than the method based on received signal strength, and it is better than the support vector machine method, which is also slightly improved compared with the deep learning method.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Zhengjie Wang ◽  
Wenwen Dou ◽  
Mingjing Ma ◽  
Xiaoxue Feng ◽  
Zehua Huang ◽  
...  

Recently, human behavior sensing based on WiFi channel state information has drawn more attention in the ubiquitous computing field because it can provide accurate information about the target under a device-free scheme. This paper concentrates on user authentication applications using channel state information. We investigate state-of-the-art studies and survey their characteristics. First, we introduce the concept of channel state information and outline the fundamental principle of user authentication. These systems measure the dynamic channel state information profile and implement user authentication by exploring the channel state information variation caused by users because each user generates unique channel state information fluctuations. Second, we elaborate on signal processing approaches, including signal selection and preprocessing, feature extraction, and classification methods. Third, we thoroughly investigate the latest user authentication applications. Specifically, we analyze these applications from typical human action, including gait, activity, gesture, and stillness. Finally, we provide a comprehensive discussion of user authentication and conclude the paper by presenting some open issues, research directions, and possible solutions.


IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 18066-18074 ◽  
Author(s):  
Hao Chen ◽  
Yifan Zhang ◽  
Wei Li ◽  
Xiaofeng Tao ◽  
Ping Zhang

Sign in / Sign up

Export Citation Format

Share Document