scholarly journals Complementary Filter for Attitude Estimation Based on MARG and Optical Flow Sensors

2021 ◽  
Vol 2010 (1) ◽  
pp. 012160
Author(s):  
Xiang Li ◽  
Qing Xu ◽  
Qi Shi ◽  
Yanmei Tang
2021 ◽  
Vol 17 (4) ◽  
pp. 155014772110098
Author(s):  
Xiaoqin Liu ◽  
Xiang Li ◽  
Qi Shi ◽  
Chuanpei Xu ◽  
Yanmei Tang

Three-dimensional attitude estimation for unmanned aerial vehicles is usually based on the combination of magnetometer, accelerometer, and gyroscope (MARG). But MARG sensor can be easily affected by various disturbances, for example, vibration, external magnetic interference, and gyro drift. Optical flow sensor has the ability to extract motion information from image sequence, and thus, it is potential to augment three-dimensional attitude estimation for unmanned aerial vehicles. But the major problem is that the optical flow can be caused by both translational and rotational movements, which are difficult to be distinguished from each other. To solve the above problems, this article uses a gated recurrent unit neural network to implement data fusion for MARG and optical flow sensors, so as to enhance the accuracy of three-dimensional attitude estimation for unmanned aerial vehicles. The proposed algorithm can effectively make use of the attitude information contained in the optical flow measurements and can also achieve multi-sensor fusion for attitude estimation without explicit mathematical model. Compared with the commonly used extended Kalman filter algorithm for attitude estimation, the proposed algorithm shows higher accuracy in the flight test of quad-rotor unmanned aerial vehicles.


2016 ◽  
Vol 16 (18) ◽  
pp. 6997-7007 ◽  
Author(s):  
Jin Wu ◽  
Zebo Zhou ◽  
Jingjun Chen ◽  
Hassen Fourati ◽  
Rui Li

2018 ◽  
Vol 41 (1) ◽  
pp. 235-245 ◽  
Author(s):  
Parag Narkhede ◽  
Alex Noel Joseph Raj ◽  
Vipan Kumar ◽  
Vinod Karar ◽  
Shashi Poddar

Attitude estimation is one of the core fundamentals for navigation of unmanned vehicles and other robotic systems. With the advent of low cost and low accuracy micro-electro-mechanical systems (MEMS) based inertial sensors, these devices are used ubiquitously for all such commercial grade systems that need motion information. However, these sensors suffer from time-varying bias and noise parameters, which need to be compensated during system state estimation. Complementary filtering is one of such techniques that is used here for estimating attitude of a moving vehicle. However, the complementary filter structure is dependent on user fed gain parameters, KP and KI and needs a mechanism by which they can be obtained automatically. In this paper, an attempt has been made towards addressing this issue by applying least square estimation technique on the error obtained between estimated and measured attitude angles. The proposed algorithm simplifies the design of nonlinear complementary filter by computing the filter gains automatically. The experimental investigation has been carried out over several datasets, confirming the advantage of obtaining gain parameters automatically for the complementary filtering structure.


2017 ◽  
Vol 69 ◽  
pp. 574-581 ◽  
Author(s):  
Rahul Kottath ◽  
Parag Narkhede ◽  
Vipan Kumar ◽  
Vinod Karar ◽  
Shashi Poddar

Sign in / Sign up

Export Citation Format

Share Document