scholarly journals Monitoring and Early Warning of Transmission Line External Breakage Based on Satellite-Ground Coordination

2021 ◽  
Vol 2078 (1) ◽  
pp. 012071
Author(s):  
Zhi Yang ◽  
Yuanjing Deng ◽  
Mengxuan Li ◽  
Yi Liu ◽  
Binbin Zhao ◽  
...  

Abstract This article first proposes a high-precision spatio-temporal registration method between satellite remote sensing images and ground sensors. Then, using satellite remote sensing images, an intelligent identification model for typical external damage hidden dangers of transmission lines based on satellite remote sensing is established to realize intelligent identification of transmission line construction work areas and mining affected areas. Aiming at the results of intelligent identification of construction work areas and mining-affected areas, the proposed YOLOv4-based external damage identification algorithm for transmission lines is used to detect external damage hidden dangers. Through the method in this paper, it is possible to realize a regular general survey of hidden dangers of external damage (construction work area, mining affected area) with full coverage of transmission channels, and carry out targeted 24-hour monitoring on the ground. The test results show that the satellite-ground coordinated transmission line external damage monitoring and early warning in this paper. The method timely and accurately realizes the monitoring and early warning of the external breakage of the transmission line.

2021 ◽  
Vol 13 (10) ◽  
pp. 1903
Author(s):  
Zhihui Li ◽  
Jiaxin Liu ◽  
Yang Yang ◽  
Jing Zhang

Objects in satellite remote sensing image sequences often have large deformations, and the stereo matching of this kind of image is so difficult that the matching rate generally drops. A disparity refinement method is needed to correct and fill the disparity. A method for disparity refinement based on the results of plane segmentation is proposed in this paper. The plane segmentation algorithm includes two steps: Initial segmentation based on mean-shift and alpha-expansion-based energy minimization. According to the results of plane segmentation and fitting, the disparity is refined by filling missed matching regions and removing outliers. The experimental results showed that the proposed plane segmentation method could not only accurately fit the plane in the presence of noise but also approximate the surface by plane combination. After the proposed plane segmentation method was applied to the disparity refinement of remote sensing images, many missed matches were filled, and the elevation errors were reduced. This proved that the proposed algorithm was effective. For difficult evaluations resulting from significant variations in remote sensing images of different satellites, the edge matching rate and the edge matching map are proposed as new stereo matching evaluation and analysis tools. Experiment results showed that they were easy to use, intuitive, and effective.


2021 ◽  
Vol 13 (17) ◽  
pp. 3425
Author(s):  
Xin Zhao ◽  
Hui Li ◽  
Ping Wang ◽  
Linhai Jing

Accurate registration for multisource high-resolution remote sensing images is an essential step for various remote sensing applications. Due to the complexity of the feature and texture information of high-resolution remote sensing images, especially for images covering earthquake disasters, feature-based image registration methods need a more helpful feature descriptor to improve the accuracy. However, traditional image registration methods that only use local features at low levels have difficulty representing the features of the matching points. To improve the accuracy of matching features for multisource high-resolution remote sensing images, an image registration method based on a deep residual network (ResNet) and scale-invariant feature transform (SIFT) was proposed. It used the fusion of SIFT features and ResNet features on the basis of the traditional algorithm to achieve image registration. The proposed method consists of two parts: model construction and training and image registration using a combination of SIFT and ResNet34 features. First, a registration sample set constructed from high-resolution satellite remote sensing images was used to fine-tune the network to obtain the ResNet model. Then, for the image to be registered, the Shi_Tomas algorithm and the combination of SIFT and ResNet features were used for feature extraction to complete the image registration. Considering the difference in image sizes and scenes, five pairs of images were used to conduct experiments to verify the effectiveness of the method in different practical applications. The experimental results showed that the proposed method can achieve higher accuracies and more tie points than traditional feature-based methods.


Sign in / Sign up

Export Citation Format

Share Document