segmentation method
Recently Published Documents





Jayati Mukherjee ◽  
Swapan K. Parui ◽  
Utpal Roy

Segmentation of text lines and words in an unconstrained handwritten or a machine-printed degraded document is a challenging document analysis problem due to the heterogeneity in the document structure. Often there is un-even skew between the lines and also broken words in a document. In this article, the contribution lies in segmentation of a document page image into lines and words. We have proposed an unsupervised, robust, and simple statistical method to segment a document image that is either handwritten or machine-printed (degraded or otherwise). In our proposed method, the segmentation is treated as a two-class classification problem. The classification is done by considering the distribution of gap size (between lines and between words) in a binary page image. Our method is very simple and easy to implement. Other than the binarization of the input image, no pre-processing is necessary. There is no need of high computational resources. The proposed method is unsupervised in the sense that no annotated document page images are necessary. Thus, the issue of a training database does not arise. In fact, given a document page image, the parameters that are needed for segmentation of text lines and words are learned in an unsupervised manner. We have applied our proposed method on several popular publicly available handwritten and machine-printed datasets (ISIDDI, IAM-Hist, IAM, PBOK) of different Indian and other languages containing different fonts. Several experimental results are presented to show the effectiveness and robustness of our method. We have experimented on ICDAR-2013 handwriting segmentation contest dataset and our method outperforms the winning method. In addition to this, we have suggested a quantitative measure to compute the level of degradation of a document page image.

Ying Sun ◽  
Ziming Li ◽  
Huagui He ◽  
Liang Guo ◽  
Xinchang Zhang ◽  

2022 ◽  
pp. 1-39
Zhicheng Geng ◽  
Zhanxuan Hu ◽  
Xinming Wu ◽  
Luming Liang ◽  
Sergey Fomel

Detecting subsurface salt structures from seismic images is important for seismic structural analysis and subsurface modeling. Recently, deep learning has been successfully applied in solving salt segmentation problems. However, most of the studies focus on supervised salt segmentation and require numerous accurately labeled data, which is usually laborious and time-consuming to collect, especially for the geophysics community. In this paper, we propose a semi-supervised framework for salt segmentation, which requires only a small amount of labeled data. In our method, adopting the mean teacher method, we train two models sharing the same network architecture. The student model is optimized using a combination of supervised loss and unsupervised consistency loss, whereas the teacher model is the exponential moving average (EMA) of the student model. We introduce the unsupervised consistency loss to better extract information from unlabeled data by constraining the network to give consistent predictions for the input data and its perturbed version. We train and test our novel semi-supervised method on both synthetic and real datasets. Results demonstrate that our proposed semi-supervised salt segmentation method outperforms the supervised baseline when there is a lack of labeled training data.

2022 ◽  
Vol 12 (1) ◽  
Akitoshi Shimazaki ◽  
Daiju Ueda ◽  
Antoine Choppin ◽  
Akira Yamamoto ◽  
Takashi Honjo ◽  

AbstractWe developed and validated a deep learning (DL)-based model using the segmentation method and assessed its ability to detect lung cancer on chest radiographs. Chest radiographs for use as a training dataset and a test dataset were collected separately from January 2006 to June 2018 at our hospital. The training dataset was used to train and validate the DL-based model with five-fold cross-validation. The model sensitivity and mean false positive indications per image (mFPI) were assessed with the independent test dataset. The training dataset included 629 radiographs with 652 nodules/masses and the test dataset included 151 radiographs with 159 nodules/masses. The DL-based model had a sensitivity of 0.73 with 0.13 mFPI in the test dataset. Sensitivity was lower in lung cancers that overlapped with blind spots such as pulmonary apices, pulmonary hila, chest wall, heart, and sub-diaphragmatic space (0.50–0.64) compared with those in non-overlapped locations (0.87). The dice coefficient for the 159 malignant lesions was on average 0.52. The DL-based model was able to detect lung cancers on chest radiographs, with low mFPI.

2022 ◽  
Vol 14 (2) ◽  
pp. 326
Ke Wang ◽  
Hainan Chen ◽  
Ligang Cheng ◽  
Jian Xiao

Many studies have focused on performing variational-scale segmentation to represent various geographical objects in high-resolution remote-sensing images. However, it remains a significant challenge to select the most appropriate scales based on the geographical-distribution characteristics of ground objects. In this study, we propose a variational-scale multispectral remote-sensing image segmentation method using spectral indices. Real scenes in remote-sensing images contain different types of land cover with different scales. Therefore, it is difficult to segment images optimally based on the scales of different ground objects. To guarantee image segmentation of ground objects with their own scale information, spectral indices that can be used to enhance some types of land cover, such as green cover and water bodies, were introduced into marker generation for the watershed transformation. First, a vector field model was used to determine the gradient of a multispectral remote-sensing image, and a marker was generated from the gradient. Second, appropriate spectral indices were selected, and the kernel density estimation was used to generate spectral-index marker images based on the analysis of spectral indices. Third, a series of mathematical morphology operations were used to obtain a combined marker image from the gradient and the spectral index markers. Finally, the watershed transformation was used for image segmentation. In a segmentation experiment, an optimal threshold for the spectral-index-marker generation method was identified. Additionally, the influence of the scale parameter was analyzed in a segmentation experiment based on a five-subset dataset. The comparative results for the proposed method, the commonly used watershed segmentation method, and the multiresolution segmentation method demonstrate that the proposed method yielded multispectral remote-sensing images with much better performance than the other methods.

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 415
Dingqian Yang ◽  
Weining Zhang ◽  
Guanghu Xu ◽  
Tiangeng Li ◽  
Jiexin Shen ◽  

As one of the most effective methods to detect the partial discharge (PD) of transformers, high frequency PD detection has been widely used. However, this method also has a bottleneck problem; the biggest problem is the mixed pulse interference under the fixed length sampling. Therefore, this paper focuses on the study of a new pulse segmentation technology, which can separate the partial discharge pulse from the sampling signal containing impulse noise so as to suppress the interference of pulse noise. Based on the characteristics of the high-order-cumulant variation at the rising edge of the pulse signal, a method for judging the starting and ending time of the pulse based on the high-order-cumulant is designed, which can accurately extract the partial discharge pulse from the original data. Simulation results show that the location accuracy of the proposed method can reach 94.67% without stationary noise. The field test shows that the extraction rate of the PD analog signal can reach 79% after applying the segmentation method, which has a great improvement compared with a very low location accuracy rate of 1.65% before using the proposed method.

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Feifei Xiu ◽  
Guishan Rong ◽  
Tao Zhang

The area of medical diagnosis has been transformed by computer-aided diagnosis (CAD). With the advancement of technology and the widespread availability of medical data, CAD has gotten a lot of attention, and numerous methods for predicting different pathological diseases have been created. Ultrasound (US) is the safest clinical imaging method; therefore, it is widely utilized in medical and healthcare settings with computer-aided systems. However, owing to patient movement and equipment constraints, certain artefacts make identification of these US pictures challenging. To enhance the quality of pictures for classification and segmentation, certain preprocessing techniques are required. Hence, we proposed a three-stage image segmentation method using U-Net and Iterative Random Forest Classifier (IRFC) to detect orthopedic diseases in ultrasound images efficiently. Initially, the input dataset is preprocessed using Enhanced Wiener Filter for image denoising and image enhancement. Then, the proposed segmentation method is applied. Feature extraction is performed by transform-based analysis. Finally, obtained features are reduced to optimal subset using Principal Component Analysis (PCA). The classification is done using the proposed Iterative Random Forest Classifier. The proposed method is compared with the conventional performance measures like accuracy, specificity, sensitivity, and dice score. The proposed method is proved to be efficient for detecting orthopedic diseases in ultrasound images than the conventional methods.

Sign in / Sign up

Export Citation Format

Share Document