scholarly journals A Disparity Refinement Algorithm for Satellite Remote Sensing Images Based on Mean-Shift Plane Segmentation

2021 ◽  
Vol 13 (10) ◽  
pp. 1903
Author(s):  
Zhihui Li ◽  
Jiaxin Liu ◽  
Yang Yang ◽  
Jing Zhang

Objects in satellite remote sensing image sequences often have large deformations, and the stereo matching of this kind of image is so difficult that the matching rate generally drops. A disparity refinement method is needed to correct and fill the disparity. A method for disparity refinement based on the results of plane segmentation is proposed in this paper. The plane segmentation algorithm includes two steps: Initial segmentation based on mean-shift and alpha-expansion-based energy minimization. According to the results of plane segmentation and fitting, the disparity is refined by filling missed matching regions and removing outliers. The experimental results showed that the proposed plane segmentation method could not only accurately fit the plane in the presence of noise but also approximate the surface by plane combination. After the proposed plane segmentation method was applied to the disparity refinement of remote sensing images, many missed matches were filled, and the elevation errors were reduced. This proved that the proposed algorithm was effective. For difficult evaluations resulting from significant variations in remote sensing images of different satellites, the edge matching rate and the edge matching map are proposed as new stereo matching evaluation and analysis tools. Experiment results showed that they were easy to use, intuitive, and effective.

2021 ◽  
Vol 13 (4) ◽  
pp. 699
Author(s):  
Tingting Zhou ◽  
Haoyang Fu ◽  
Chenglin Sun ◽  
Shenghan Wang

Due to the block of high-rise objects and the influence of the sun’s altitude and azimuth, shadows are inevitably formed in remote sensing images particularly in urban areas, which causes missing information in the shadow region. In this paper, we propose a new method for shadow detection and compensation through objected-based strategy. For shadow detection, the shadow was highlighted by an improved shadow index (ISI) combined color space with an NIR band, then ISI was reconstructed by the objects acquired from the mean-shift algorithm to weaken noise interference and improve integrity. Finally, threshold segmentation was applied to obtain the shadow mask. For shadow compensation, the objects from segmentation were treated as a minimum processing unit. The adjacent objects are likely to have the same ambient light intensity, based on which we put forward a shadow compensation method which always compensates shadow objects with their adjacent non-shadow objects. Furthermore, we presented a dynamic penumbra compensation method (DPCM) to define the penumbra scope and accurately remove the penumbra. Finally, the proposed methods were compared with the stated-of-art shadow indexes, shadow compensation method and penumbra compensation methods. The experiments show that the proposed method can accurately detect shadow from urban high-resolution remote sensing images with a complex background and can effectively compensate the information in the shadow region.


2018 ◽  
Vol 46 (11) ◽  
pp. 1805-1814
Author(s):  
Tianjun Wu ◽  
Liegang Xia ◽  
Jiancheng Luo ◽  
Xiaocheng Zhou ◽  
Xiaodong Hu ◽  
...  

2020 ◽  
Vol 12 (24) ◽  
pp. 4025
Author(s):  
Rongshu Tao ◽  
Yuming Xiang ◽  
Hongjian You

As an essential step in 3D reconstruction, stereo matching still faces unignorable problems due to the high resolution and complex structures of remote sensing images. Especially in occluded areas of tall buildings and textureless areas of waters and woods, precise disparity estimation has become a difficult but important task. In this paper, we develop a novel edge-sense bidirectional pyramid stereo matching network to solve the aforementioned problems. The cost volume is constructed from negative to positive disparities since the disparity range in remote sensing images varies greatly and traditional deep learning networks only work well for positive disparities. Then, the occlusion-aware maps based on the forward-backward consistency assumption are applied to reduce the influence of the occluded area. Moreover, we design an edge-sense smoothness loss to improve the performance of textureless areas while maintaining the main structure. The proposed network is compared with two baselines. The experimental results show that our proposed method outperforms two methods, DenseMapNet and PSMNet, in terms of averaged endpoint error (EPE) and the fraction of erroneous pixels (D1), and the improvements in occluded and textureless areas are significant.


Author(s):  
Y. Di ◽  
G. Jiang ◽  
L. Yan ◽  
H. Liu ◽  
S. Zheng

Most of multi-scale segmentation algorithms are not aiming at high resolution remote sensing images and have difficulty to communicate and use layers’ information. In view of them, we proposes a method of multi-scale segmentation of high resolution remote sensing images by integrating multiple features. First, Canny operator is used to extract edge information, and then band weighted distance function is built to obtain the edge weight. According to the criterion, the initial segmentation objects of color images can be gained by Kruskal minimum spanning tree algorithm. Finally segmentation images are got by the adaptive rule of Mumford–Shah region merging combination with spectral and texture information. The proposed method is evaluated precisely using analog images and ZY-3 satellite images through quantitative and qualitative analysis. The experimental results show that the multi-scale segmentation of high resolution remote sensing images by integrating multiple features outperformed the software eCognition fractal network evolution algorithm (highest-resolution network evolution that FNEA) on the accuracy and slightly inferior to FNEA on the efficiency.


2011 ◽  
Vol 90-93 ◽  
pp. 2836-2839 ◽  
Author(s):  
Jian Cui ◽  
Dong Ling Ma ◽  
Ming Yang Yu ◽  
Ying Zhou

In order to extract ground information more accurately, it is important to find an image segmentation method to make the segmented features match the ground objects. We proposed an image segmentation method based on mean shift and region merging. With this method, we first segmented the image by using mean shift method and small-scale parameters. According to the region merging homogeneity rule, image features were merged and large-scale image layers were generated. What’s more, Multi-level image object layers were created through scaling method. The test of segmenting remote sensing images showed that the method was effective and feasible, which laid a foundation for object-oriented information extraction.


Sign in / Sign up

Export Citation Format

Share Document