scholarly journals Disconnected stationary solutions for 3D Kolmogorov flow problem: preliminary results

2021 ◽  
Vol 2090 (1) ◽  
pp. 012046
Author(s):  
Nikolay M. Evstigneev

Abstract The extension of the classical A.N. Kolmogorov’s flow problem for the stationary 3D Navier-Stokes equations on a stretched torus for velocity vector function is considered. A spectral Fourier method with the Leray projection is used to solve the problem numerically. The resulting system of nonlinear equations is used to perform numerical bifurcation analysis. The problem is analyzed by constructing solution curves in the parameter-phase space using previously developed deflated pseudo arc-length continuation method. Disconnected solutions from the main solution branch are found. These results are preliminary and shall be generalized elsewhere.

2020 ◽  
Vol 22 (4) ◽  
Author(s):  
Bernard Nowakowski ◽  
Gerhard Ströhmer

AbstractWe investigate the existence and regularity of solutions to the stationary Stokes system and non-stationary Navier–Stokes equations in three dimensional bounded domains with in- and out-lets. We assume that on the in- and out-flow parts of the boundary the pressure is prescribed and the tangential component of the velocity field is zero, whereas on the lateral part of the boundary the fluid is at rest.


2020 ◽  
Vol 310 ◽  
pp. 00044
Author(s):  
Juraj Mužík

The paper presents the use of the dual reciprocity multidomain singular boundary method (SBMDR) for the solution of the laminar viscous flow problem described by Navier-Stokes equations. A homogeneous part of the solution is solved using a singular boundary method with the 2D Stokes fundamental solution - Stokeslet. The dual reciprocity approach has been chosen because it is ideal for the treatment of the nonhomogeneous and nonlinear terms of Navier-Stokes equations. The presented SBMDR approach to the solution of the 2D flow problem is demonstrated on a standard benchmark problem - lid-driven cavity.


2022 ◽  
Vol 2159 (1) ◽  
pp. 012007
Author(s):  
N Balaguera Medina ◽  
M A Atuesta ◽  
O A Nieto ◽  
P A Ospina Henao

Abstract The fixed-wall rectangular cavity flow problem is a classic problem that has been studied since the beginning of computational fluid mechanics. The present work aims to provide a numerical and computational solution of the Navier-Stokes equations using the finite difference method, applied to model the problem of a magnetorheological fluid in a rectangular cavity with a fixed wall in shock absorbers devices, used in civil structures that use energy dissipators.


2019 ◽  
Vol 31 (07) ◽  
pp. 1950023 ◽  
Author(s):  
Hui Liu ◽  
Lin Lin ◽  
Chengfeng Sun ◽  
Qingkun Xiao

The stochastic 3D Navier–Stokes equation with damping driven by a multiplicative noise is considered in this paper. The stability of weak solutions to the stochastic 3D Navier–Stokes equations with damping is proved for any [Formula: see text] with any [Formula: see text] and [Formula: see text] as [Formula: see text]. The weak solutions converge exponentially in the mean square and almost surely exponentially to the stationary solutions are proved for any [Formula: see text] with any [Formula: see text] and [Formula: see text] as [Formula: see text]. The stabilization of these equations is obtained for any [Formula: see text] with any [Formula: see text] and [Formula: see text] as [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document