scholarly journals Measurement of time-like baryon electromagnetic form factors in processes with initial state radiation

2013 ◽  
Vol 426 ◽  
pp. 012016
Author(s):  
Cristina Morales Morales ◽  
Frank E Maas
2014 ◽  
Vol 35 ◽  
pp. 1460425
Author(s):  
V. P. DRUZHININ ◽  

The process [Formula: see text] has been studied in the [Formula: see text] mass range from threshold to 6.5 GeV/c2 using the initial-state-radiation technique with both detected and undetected photon. The analysis is based on 469 fb-1 of integrated luminosity collected with the BABAR detector at the PEP-II collider at e+e- center-of-mass energies near 10.6 GeV.


2019 ◽  
Vol 218 ◽  
pp. 04002
Author(s):  
Alaa Dbeyssi

This contribution reports on the recent measurements of baryon electromagnetic form factors at the BESIII experiment in Beijing. The Beijing e+e − collider BEPCII is a double-ring symmetric collider running at $ \sqrt s $ between 2.0 and 4.6 GeV. Baryon electromagnetic form factors can be measured at BESIII in direct e+e−-annihilation and in initial state radiation processes. Based on the data collected by the BESIII detector at 12 center of mass energies between 2.23 and 3.67 GeV, the measured $ \mathop e\nolimits^ + \mathop e\nolimits^ - \to \mathop p\limits^ - p $ cross section and the time-like proton form factor are presented. Preliminary results from the analysis of the initial state radiation process $ \mathop e\nolimits^ + \mathop e\nolimits^ - \to \mathop p\limits^ - p\gamma $ using a data set of 7.408 fb−1 collected at center of mass energies between 3.773 and 4.6 GeV, are also shown. The cross sections for $ \mathop e\nolimits^ + \mathop e\nolimits^ - \to \mathop {\mathop \Lambda \nolimits_c^ - }\limits^ - \mathop \Lambda \nolimits_c^ + $ and $ \mathop e\nolimits^ + \mathop e\nolimits^ - \to \mathop \Lambda \limits^ - \Lambda $ are measured near threshold with unprecedented precision. Preliminary results on the first measurement of the ^c form factor ratio |GE|/|GM| are also given. Ongoing analysis based on the high luminosity energy scan from 2015 and from radiative return at different $ \sqrt s $ are also described.


Author(s):  
Dexu Lin ◽  
Alaa Dbeyssi ◽  
Frank Maas

The measurements of the proton electromagnetic form factors in the time-like region using the initial state radiation technique are reviewed. Recent experimental studies have shown that initial state radiation processes at high luminosity electron-positron colliders can be effectively used to probe the electromagnetic structure of hadrons. The BABAR experiment at the B-factory PEP-II in Stanford and the BESIII experiment at the $\tau$-charm factory BEPC-II in Beijing have measured the time-like form factors of the proton using the initial state radiation process $e^{+}e^{-}\to pbar{p}\gamma$. The two kinematical regions where the photon is emitted from the initial state at small and large polar angles have been investigated. In the first case the photon is in the region not covered by the detector acceptance and is not detected. The Born cross section and the proton effective form factor have been measured over a wide and continuous range of the the momentum transfer squared $q^2$ from threshold up to ~42 (GeV/c)$^2$. The ratio of electric and magnetic form factors of the proton has been also determined. In this report, the theoretical aspect and the experimental studies of the initial state radiation process $e^{+}e^{-}\to p\bar{p}\gamma$ are described. The measurements of the Born cross section and the proton form factors obtained in these analyses near the threshold region and in the relatively large $q^2$ region are examined. The experimental results are compared to the predictions from theory and models. Their impact on our understanding of the nucleon structure is discussed.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 91
Author(s):  
Dexu Lin ◽  
Alaa Dbeyssi ◽  
Frank Maas

Electromagnetic form factors are fundamental quantities describing the internal structure of hadrons. They can be measured with scattering processes in the space-like region and annihilation processes in the time-like region. The two regions are connected by crossing symmetry. The measurements of the proton electromagnetic form factors in the time-like region using the initial state radiation technique are reviewed. Recent experimental studies have shown that initial state radiation processes at high luminosity electron-positron colliders can be effectively used to probe the electromagnetic structure of hadrons. The BABAR experiment at the B-factory PEP-II in Stanford and the BESIII experiment at BEPCII (an electron positron collider in the τ-charm mass region) in Beijing have measured the time-like form factors of the proton using the initial state radiation process e+e−→pp¯γ. The two kinematical regions where the photon is emitted from the initial state at small and large polar angles have been investigated. In the first case, the photon is in the region not covered by the detector acceptance and is not detected. The Born cross section and the proton effective form factor have been measured over a wide and continuous range of the the momentum transfer squared q2 from the threshold up to 42 (GeV/c)2. The ratio of electric and magnetic form factors of the proton has been also determined. In this report, the theoretical aspect and the experimental studies of the initial state radiation process e+e−→pp¯γ are described. The measurements of the Born cross section and the proton form factors obtained in these analyses near the threshold region and in the relatively large q2 region are examined. The experimental results are compared to the predictions from theory and models. Their impact on our understanding of the nucleon structure is discussed.


1986 ◽  
Vol 32 (1) ◽  
pp. 67-83 ◽  
Author(s):  
Mats Bengtsson ◽  
Torbj�rn Sj�strand ◽  
Maria Zijl

2008 ◽  
Vol 77 (1) ◽  
Author(s):  
C. Z. Yuan ◽  
C. P. Shen ◽  
P. Wang ◽  
X. L. Wang ◽  
I. Adachi ◽  
...  

2014 ◽  
Vol 89 (11) ◽  
Author(s):  
J. P. Lees ◽  
V. Poireau ◽  
V. Tisserand ◽  
J. Garra Tico ◽  
E. Grauges ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document