integrated luminosity
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 53)

H-INDEX

9
(FIVE YEARS 2)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
◽  
R. Aaij ◽  
A. S. W. Abdelmotteleb ◽  
C. Abellán Beteta ◽  
F. J. Abudinen Gallego ◽  
...  

Abstract Using proton-proton collision data, corresponding to an integrated luminosity of 9 fb−1 collected with the LHCb detector, seven decay modes of the $$ {\mathrm{B}}_{\mathrm{c}}^{+} $$ B c + meson into a J/ψ or ψ(2S) meson and three charged hadrons, kaons or pions, are studied. The decays $$ {\mathrm{B}}_{\mathrm{c}}^{+} $$ B c + → (ψ(2S) → J/ψπ+π−)π+, $$ {\mathrm{B}}_{\mathrm{c}}^{+} $$ B c + → ψ(2S)π+π−π+, $$ {\mathrm{B}}_{\mathrm{c}}^{+} $$ B c + → J/ψK+π−π+ and $$ {\mathrm{B}}_{\mathrm{c}}^{+} $$ B c + → J/ψK+K−K+ are observed for the first time, and evidence for the $$ {\mathrm{B}}_{\mathrm{c}}^{+} $$ B c + → ψ(2S)K+K−π+, decay is found, where J/ψ and ψ(2S) mesons are reconstructed in their dimuon decay modes. The ratios of branching fractions between the different $$ {\mathrm{B}}_{\mathrm{c}}^{+} $$ B c + decays are reported as well as the fractions of the decays proceeding via intermediate resonances. The results largely support the factorisation approach used for a theoretical description of the studied decays.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
◽  
M. Ablikim ◽  
M. N. Achasov ◽  
P. Adlarson ◽  
S. Ahmed ◽  
...  

Abstract Using a data set corresponding to an integrated luminosity of 6.32 fb−1 recorded by the BESIII detector at center-of-mass energies between 4.178 and 4.226 GeV, an amplitude analysis of the decay $$ {D}_s^{+} $$ D s + → π+π0π0 is performed, and the relative fractions and phases of different intermediate processes are determined. The absolute branching fraction of the decay $$ {D}_s^{+} $$ D s + → π+π0π0 is measured to be (0.50 ± 0.04stat ± 0.02syst)%. The absolute branching fraction of the intermediate process $$ {D}_s^{+} $$ D s + → f0(980)π+, f0(980) → π0π0 is determined to be (0.28 ± 0.04stat ± 0.04syst)%.


2022 ◽  
Vol 17 (01) ◽  
pp. P01013
Author(s):  
Georges Aad ◽  
Brad Abbott ◽  
Dale Charles Abbott ◽  
Adam Abed Abud ◽  
Kira Abeling ◽  
...  

Abstract The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules. During Run 2 (2015–2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb-1 to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector. Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2. It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%. Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules.


2022 ◽  
Vol 258 ◽  
pp. 06006
Author(s):  

The existence of CP violation in the decays of strange and beauty mesons is very well established experimentally. On the contrary, CP violation in the decays of charmed particles has been elusive for a long time and has been observed for the first time in 2019 by the LHCb experiment. Since then several studies have been performed in the charm sector. During the LHC Run 1 and Run 2, the LHCb collaboration has collected large samples containing charm hadron decays, on a scale never seen before. Collected data enabled physicists to obtain several new results, most of which surpassed previous results and became new world’s best measurements. Presently the LHCb spectrometer is being upgraded to enhance readout system, improve subdetector components and increase integrated luminosity to 50 fb−1 by the end of Run 4.


2021 ◽  
Vol 34 ◽  
pp. 18-22
Author(s):  
A.A. Pankov ◽  
I.A. Serenkova ◽  
V.A. Bednyakov

The full ATLAS and CMS Run 2 data set at the Large Hadron Collider (LHC) with time- integrated luminosity of 139 fb −1 and 137 fb −1 , re- spectively, in the diboson channel is used to probe benchmark models with extended gauge sectors: theE 6 -motivated Grand Unification models, the left-right symmetric LR and the sequential standard model. These all predict neutral Z' and charged W' vector bosons, decaying into lepton or electroweak gauge boson pairs. We present constraints on the parameter space of the Z' and W' and compare them to those obtained from the previous analyses performed withLHC data collected at 7 and 8 TeV in Run 1 as well as at 13 TeV in Run 2 at time-integrated luminosity of 36.1 fb −1 . We show that proton-proton collision data at √ s = 13 TeV collected by the ATLAS and the CMS experiments allow to set the most stringent bounds to date on Z-Z' and W-W' mixing.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Jinmian Li ◽  
Junle Pei ◽  
Long jie Ran ◽  
Wenxing Zhang

Abstract We study FASER and FASER 2 sensitivities to the quirk signal by simulating the motions of quirks that are travelling through several infrastructures from the ATLAS interaction point to the FASER (2) detector. The ionization energy losses for a charged quirk travelling in different materials are treated carefully. We calculate the expected numbers of quirk events that can reach the FASER (2) detector for an integrated luminosity of 150 (3000) fb−1. Scenarios for quirks with four different quantum numbers, and different masses and confinement scales are studied.


2021 ◽  
Vol 2105 (1) ◽  
pp. 012011
Author(s):  
Konstantinos Bachas ◽  
Ioannis Karkanias ◽  
Eirini Kasimi ◽  
Christos Leonidis ◽  
Chara Petridou ◽  
...  

Abstract In this paper we study the use of Machine Learning techniques to set constraints on indirect signatures of physics beyond the Standard Model in Vector Boson Scattering (VBS), in the electroweak (EWK) production of self-interacting W ± Z bosons in association with two jets. The WZ fully leptonic channel has been extensively studied by the ATLAS Collaboration at the LHC and we are about to provide results using the full Run 2 data corresponding to an integrated luminosity of 139fb −1. The EWK production of the WZ in association with two jets has been already observed at 36fb −1 with an observed significance of 5.3 standard deviations. A factor of four increase in the integrated luminosity provides an opportunity to check for deviations from the Standard Model (SM) predictions, in particular for model independent, indirect searches for New Physics. Such searches can be realized in the context of an extension of the SM in terms of an Effective Field Theory (EFT) formalism, providing a way to quantify possible deviations from the Standard Model. The EFT Lagrangian besides the Standard Model terms comprises contributions from higher dimension operators, their effect being determined by the strength of their corresponding parameters (Wilson coefficients scaled to the appropriate power of Λ, indicating the scale of the appearance of New Physics). In this paper an attempt is made to search for New Physics effects in the WZjj production, using state-of-the-art machine learning models where diverse network architectures are effectively combined into ensembles trained on the outcomes of base learners maximizing performance. The base learners are trained to identify pure WZjj signal events originating from the effect of EFT operators, from WZjj background events originating from strong (QCD) or EWK WZjj processes. We investigate the utilization of the ensemble model response in estimating the sensitivity of WZjj events in some of the dimension-8 EFT operators and compare the results to sensitive kinematic variables traditionally used to constrain the EFT operator effects.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
A. M. Sirunyan ◽  
A. Tumasyan ◽  
W. Adam ◽  
T. Bergauer ◽  
M. Dragicevic ◽  
...  

AbstractCollinear (small-angle) and large-angle, as well as soft and hard radiations are investigated in three-jet and $${\text {Z}}$$ Z  + two-jet events collected in proton-proton collisions at the LHC. The normalized production cross sections are measured as a function of the ratio of transverse momenta of two jets and their angular separation. The measurements in the three-jet and $${\text {Z}}$$ Z  + two-jet events are based on data collected at a center-of-mass energy of 8$$\,{\text {TeV}}$$ TeV , corresponding to an integrated luminosity of 19.8$$\,\text {fb}^{-1}$$ fb - 1 . The $${\text {Z}}$$ Z  + two-jet events are reconstructed in the dimuon decay channel of the $${\text {Z}}$$ Z  boson. The three-jet measurement is extended to include $$\sqrt{s} = 13\,{\text {TeV}} $$ s = 13 TeV data corresponding to an integrated luminosity of 2.3$$\,\text {fb}^{-1}$$ fb - 1 . The results are compared to predictions from event generators that include parton showers, multiple parton interactions, and hadronization. The collinear and soft regions are in general well described by parton showers, whereas the regions of large angular separation are often best described by calculations using higher-order matrix elements.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Xi-Yan Tian ◽  
Liu-Feng Du ◽  
Yao-Bei Liu

AbstractThe vectorlike top partners are potential signature of some new physics beyond the Standard Model at the TeV scale. In this paper, we propose to search for the vectorlike T quark with charge 2/3 in the framework of a simplified model where the top partners only couples with the third generation of Standard Model quarks. We investigate the observability for electroweak production of a vectorlike T quark in association with a standard model bottom quark through the process $$pp \rightarrow T\bar{b}j$$ p p → T b ¯ j with the subsequent decay mode of $$T\rightarrow t(\rightarrow b W^+\rightarrow b \ell ^{+} \nu _{\ell })h( \rightarrow \gamma \gamma )$$ T → t ( → b W + → b ℓ + ν ℓ ) h ( → γ γ ) , at the proposed High Energy Large Hadron Collider (HE-LHC) and Future Circular Collider in hadron-hadron mode (FCC-hh) including the realistic detector effects. The 95% confidence level excluded regions and the $$5\sigma $$ 5 σ discovery reach in the parameter plane of $$\kappa _{T}-m_T$$ κ T - m T , are respectively obtained at the HE-LHC with the integrated luminosity of 15 ab$$^{-1}$$ - 1 and the FCC-hh with the integrated luminosity of 30 ab$$^{-1}$$ - 1 . We also analyze the projected sensitivity in terms of the production cross section times branching fraction at the HE-LHC and FCC-hh.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
◽  
R. Aaij ◽  
C. Abellán Beteta ◽  
T. Ackernley ◽  
B. Adeva ◽  
...  

Abstract A search is performed for rare and forbidden charm decays of the form $$ {D}_{(s)}^{+}\to {h}^{\pm }{\mathrm{\ell}}^{+}{\mathrm{\ell}}^{\left(\prime \right)\mp } $$ D s + → h ± ℓ + ℓ ′ ∓ , where h± is a pion or kaon and ℓ(′)± is an electron or muon. The measurements are performed using proton-proton collision data, corresponding to an integrated luminosity of 1.6 fb−1, collected by the LHCb experiment in 2016. No evidence is observed for the 25 decay modes that are investigated and 90 % confidence level limits on the branching fractions are set between 1.4 × 10−8 and 6.4 × 10−6. In most cases, these results represent an improvement on existing limits by one to two orders of magnitude.


Sign in / Sign up

Export Citation Format

Share Document