scholarly journals Gravity’s Rainbow and Black Hole Entropy

2017 ◽  
Vol 942 ◽  
pp. 012011 ◽  
Author(s):  
Remo Garattini
2021 ◽  
pp. 2150158
Author(s):  
M. Dehghani ◽  
B. Pourhassan

In this paper, we consider three-dimensional massive gravity’s rainbow and obtain black hole solutions in three different cases of Born–Infeld, logarithmic, and exponential theories of nonlinear electrodynamics. We discuss the horizon structure and geometrical properties. Then, we study thermodynamics of these models by considering the first-order quantum correction effects, which appear as a logarithmic term in the black hole entropy. We discuss such effects on the black hole stability and phase transitions. We find that due to the quantum corrections, the second-order phase transition happens in Born–Infeld and logarithmic models. We obtain the modified first law of black hole thermodynamics in the presence of logarithmic corrections.


2019 ◽  
Vol 28 (08) ◽  
pp. 1950109
Author(s):  
Tairan Liang ◽  
Wei Tang ◽  
Wei Xu

In this paper, we present the entropy relations and bounds of Banados–Teitelboim–Zanelli (BTZ) black hole in two models of gravity's rainbow. Because of the effect of gravity's rainbow, one can find that the entropy product and sum both lost their universality and become mass-dependent. On the other hand, comparing the entropy bound of event horizon to the BTZ case, it is shown that the angular momentum [Formula: see text] enlarges the entropy bound while the gravity's rainbow parameter [Formula: see text] diminishes it. For the entropy bound of Cauchy horizon, the gravity's rainbow parameter [Formula: see text] enlarges it at the large [Formula: see text] limit, while [Formula: see text] diminishes it at the small [Formula: see text] limit. These suggest some clues on the geometrical origin of black hole entropy bounds.


2016 ◽  
Vol 94 (6) ◽  
Author(s):  
Jun Tao ◽  
Peng Wang ◽  
Haitang Yang

Sign in / Sign up

Export Citation Format

Share Document