Improving spatial resolution by predicting the initial position of charge-sharing effect in photon-counting detectors

2020 ◽  
Vol 15 (01) ◽  
pp. C01034-C01034 ◽  
Author(s):  
G. Kim ◽  
K. Park ◽  
K.T. Lim ◽  
J. Kim ◽  
G. Cho
Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6093
Author(s):  
Oliver L. P. Pickford Scienti ◽  
Jeffrey C. Bamber ◽  
Dimitra G. Darambara

Most modern energy resolving, photon counting detectors employ small (sub 1 mm) pixels for high spatial resolution and low per pixel count rate requirements. These small pixels can suffer from a range of charge sharing effects (CSEs) that degrade both spectral analysis and imaging metrics. A range of charge sharing correction algorithms (CSCAs) have been proposed and validated by different groups to reduce CSEs, however their performance is often compared solely to the same system when no such corrections are made. In this paper, a combination of Monte Carlo and finite element methods are used to compare six different CSCAs with the case where no CSCA is employed, with respect to four different metrics: absolute detection efficiency, photopeak detection efficiency, relative coincidence counts, and binned spectral efficiency. The performance of the various CSCAs is explored when running on systems with pixel pitches ranging from 100 µm to 600µm, in 50 µm increments, and fluxes from 106 to 108 photons mm−2 s−1 are considered. Novel mechanistic explanations for the difference in performance of the various CSCAs are proposed and supported. This work represents a subset of a larger project in which pixel pitch, thickness, flux, and CSCA are all varied systematically.


2003 ◽  
Author(s):  
Anton S. Tremsin ◽  
John V. Vallerga ◽  
Oswald H. W. Siegmund ◽  
Jeff S. Hull

Sign in / Sign up

Export Citation Format

Share Document