scholarly journals Simulated changes in biogenic VOC emissions and ozone formation from habitat expansion of Acer Rubrum (red maple)

2014 ◽  
Vol 9 (1) ◽  
pp. 014006 ◽  
Author(s):  
Beth A Drewniak ◽  
Peter K Snyder ◽  
Allison L Steiner ◽  
Tracy E Twine ◽  
Donald J Wuebbles
2020 ◽  
Vol 52 (3) ◽  
pp. 292-297
Author(s):  
Tara Lee Bal ◽  
Katherine Elizabeth Schneider ◽  
Dana L. Richter

2004 ◽  
Vol 52 (6) ◽  
pp. 757 ◽  
Author(s):  
M. B. Dickinson ◽  
J. Jolliff ◽  
A. S. Bova

Hyperbolic temperature exposures (in which the rate of temperature rise increases with time) and an analytical solution to a rate-process model were used to characterise the impairment of respiration in samples containing both phloem (live bark) and vascular-cambium tissue during exposures to temperatures such as those experienced by the vascular cambium in tree stems heated by forest fires. Tissue impairment was characterised for red maple (Acer rubrum), chestnut oak (Quercus prinus), Douglas fir (Pseudotsuga menziesii), and ponderosa pine (Pinus ponderosa) samples. The estimated temperature dependence of the model’s rate parameter (described by the Arrhenius equation) was a function of the temperature regime to which tissues were exposed. Temperatures rising hyperbolically from near ambient (30°C) to 65°C produced rate parameters for the deciduous species that were similar at 60°C to those from the literature, estimated by using fixed temperature exposures. In contrast, samples from all species showed low rates of impairment, conifer samples more so than deciduous, after exposure to regimes in which temperatures rose hyperbolically between 50 and 60°C. A hypersensitive response could explain an early lag in tissue-impairment rates that apparently caused the differences among heating regimes. A simulation based on stem vascular-cambium temperature regimes measured during fires shows how temperature-dependent impairment rates can be used to predict tissue necrosis in fires. To our knowledge, hyperbolic temperature exposures have not been used to characterise plant tissue thermal tolerance and, given certain caveats, could provide more realistic data more efficiently than fixed-temperature exposures.


1972 ◽  
Vol 50 (8) ◽  
pp. 1783-1784 ◽  
Author(s):  
John P. Rier ◽  
Alex L. Shigo

Fluorescence microscopy was used to show that during 34 days after the wounding of red maple, Acer rubrum, callose accumulated in the phloem, new xylary tissues formed, and plugs formed in vessels to 10 cm above and below the wounds.


Atmosphere ◽  
2018 ◽  
Vol 9 (5) ◽  
pp. 179 ◽  
Author(s):  
Satoru Chatani ◽  
Motonori Okumura ◽  
Hikari Shimadera ◽  
Kazuyo Yamaji ◽  
Kyo Kitayama ◽  
...  

1970 ◽  
Vol 48 (1) ◽  
pp. 147-152
Author(s):  
Richard J. Medve

Soils collected from eight different plant communities that contained red maples (Acer rubrum L.) had little effect on root fan structures of red maple seedlings. Seedlings from eight seed sources, grown in the same soil types, showed a significant amount of variation for third order root characteristics. Root fan structures, especially those characteristics relating to beaded rootlets, were significantly affected by soil sterilization. Root fan structures were more copious and developed more rapidly on indigenous seedlings than on seedlings grown under greenhouse conditions.


Sign in / Sign up

Export Citation Format

Share Document