Decay of birdseye sugar maple (Acer Saccharum) and curly red maple (Acer Rubrum)

2020 ◽  
Vol 52 (3) ◽  
pp. 292-297
Author(s):  
Tara Lee Bal ◽  
Katherine Elizabeth Schneider ◽  
Dana L. Richter
HortScience ◽  
1997 ◽  
Vol 32 (7) ◽  
pp. 1274-1275 ◽  
Author(s):  
Paul H. Henry ◽  
John E. Preece

Vegetative shoots were forced in the greenhouse from excised stem (branch) sections of dormant Japanese maple (Acer palmatum Thunb.), red maple (Acer rubrum L.), and sugar maple (Acer saccharum Marsh.). Softwood shoots generated in this way were used as stem cuttings in a subsequent adventitious rooting study. Data indicate that maple shoots can be forced using this technique, but that both the percentage of stem sections forming shoots and the number of shoots produced are highly variable among both species and clones. Whereas Japanese and red maple formed shoots on >50% of stem sections, shoots were generated on only 20% of sugar maple stem sections. Significant variability was also observed in rooting response, with red maple shoots rooting at much higher percentages (60%) than either Japanese maple (26%) or sugar maple (15%).


1999 ◽  
Vol 17 (2) ◽  
pp. 80-83 ◽  
Author(s):  
J. Roger Harris ◽  
Jody Fanelli

Abstract Red maple (Acer rubrum L. ‘Franksred’) and sugar maple (Acer saccharum Marsh. ‘Green Mountain’) trees were grown in a 56 liter (15 gal) pot-in-pot system for two years. During the second year of production, root growth was observed through observation plates fitted into the container sidewalls, and shoot extension was periodically measured. Root growth began in early March, approximately one month before budbreak for both species. Root growth dramatically slowed down at the onset of budbreak, but quickly resumed and was concurrent with shoot elongation. Root growth slowed dramatically in the fall when substrate temperatures dropped to 5–7C (40–45F). Root growth stopped during the winter for red maple, but some nominal root growth continued throughout the winter for sugar maple. Red maples had over 5 times more total root length against observation plates at the end of the experiment than sugar maples.


2017 ◽  
Vol 47 (11) ◽  
pp. 1457-1467 ◽  
Author(s):  
Mark Castle ◽  
Aaron Weiskittel ◽  
Robert Wagner ◽  
Mark Ducey ◽  
Jereme Frank ◽  
...  

Northern hardwood trees display a wide variety of stem forms and defects, which can substantially reduce their financial value and also complicate their silviculture. While attributes of stem form and defect have been incorporated into tree classification systems, their ability to assess product value and recovery in standing trees has not been adequately tested. To address this issue, we classified stem form and risk using a system developed by the Northern Hardwoods Research Institute (NHRI) for four species across several locations in Maine, New Hampshire, and New Brunswick: sugar maple (Acer saccharum Marsh.), red maple (Acer rubrum L.), yellow birch (Betula alleghaniensis Britton), and northern red oak (Quercus rubra L.). Using these data, we (i) quantified interspecific and regional variation in stem form and damage, (ii) related potential sawlog recovery to tree size, form, and risk, and (iii) compared the efficacy of the NHRI system with a commonly used classification system and a continuous measure of stem quality. High variation in both stem form and damage among the species was found, with red maple showing the largest range. A simplified NHRI system including three form classes proved to be sufficient in differentiating sawlog potential in individual trees, while a model using a continuous measure of stem quality (estimated merchantable sawlog height) performed best.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1143b-1143
Author(s):  
Orville M. Lindstrom

The cold hardiness of seven deciduous hardwoods, red maple (Acer rubrum L.), white oak, (Quercus alba L.), green ash (Fraxinus pennsylvanica Marsh.), sweetgum (Liguidambar stryaciflua L.), sugar maple (Acer saccharum Marsh.), river birch (Betula nigra L.) and black cherry (Prunus serotina Ehrh.) were evaluated weekly during the fall, winter and spring for three consecutive years. All trees evaluated were established (20-40 years old) and locatd on the Georgia Station Griffin, GA. Each species developed a maximum cold hardiness of at least -30 C by mid-January or early February each season. Response to temperature fluctuations varied with species. Red maple, for example, lost less cold hardiness due to warm mid-winter temperatures than the other species tested, while white oak tended to respond more quickly to the temperature fluctuations. Data will be presented comparing the response of cold hardiness to mid-winter temperature fluctuations for each species for the three year period.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 136
Author(s):  
Brice B. Hanberry

Forest classifications by disturbance permit designation of multiple types of both old growth forests and shorter-lived forests, which auto-replace under severe disturbance, and also identification of loss of the disturbance type and associated forest. Historically, fire and flooding disturbance regimes, or conversely, infrequent disturbance, produced unique forests such as disturbance-independent forests of American beech (Fagus grandifolia), eastern hemlock (Tsuga canadensis), and sugar maple (Acer saccharum) in the Eastern United States. However, disturbance has changed to primarily frequent mechanical overstory disturbance, resulting in novel forests. To demonstrate the transition to no-analog forests after disturbance change, I compared historical tree surveys (ca. 1837 to 1857) to current surveys in the Northern Lower Peninsula of Michigan. To establish widespread disturbance change effects, I also located where beech and hemlock are currently most abundant throughout the Eastern US compared to historical distribution of beech–hemlock forests. In the Northern Lower Peninsula of Michigan, beech and hemlock historically were about 30% of all trees, but currently, beech and hemlock are 2% of all trees. Red maple (Acer rubrum) increased from 1% to 11% of all trees and aspen (Populus) increased from 2% to 13% of all trees. The squared-chord difference between historical and current surveys was 0.40, or dissimilar forests. Areas with ≥20% beech and hemlock or ≥15% of either species decreased from about 52 million to 6 million hectares, with current distribution restricted to the Northeastern US. Current forests are dissimilar to historical forests, and this transition appears to be driven by disturbance regimes without historical analogs. Disturbance change may provide perspective in forest management for climate change.


2015 ◽  
Vol 45 (3) ◽  
pp. 236-245 ◽  
Author(s):  
Evan M. Gora ◽  
Stephen P. Yanoviak

Trees form the terrestrial interface with the atmosphere in forested regions. The electrical properties of trees may influence their response to atmospheric conditions and potentially lethal phenomena (e.g., lightning). We review the literature describing electrical properties of trees and provide a tabular summary of the methods and goals of each study. We hypothesized that electrical resistivity varies consistently among species and between growth forms. We surveyed resistivity of eight tree and three vine species in Michigan and Kentucky, and we quantified resistivity over a moisture gradient for wood blocks of four tree species. Resistivity varied predictably with stem diameter and differed among species and growth forms. Specifically, resistivity of trees was approximately 200% higher than resistivity of vines, and resistivity of conifers was 135% higher than that of hardwoods. The regional comparison showed no difference in resistivity of red maple (Acer rubrum L.) and sugar maple (Acer saccharum Marsh.) between Michigan and Kentucky. These results, in combination with interspecific differences observed among wood blocks, suggest that there is a phylogenetic basis for variation in resistivity that reflects differences in anatomy and physiology. Our review and empirical survey provide a framework for studying the ecological effects of lightning in the context of the electrical properties of trees.


Sign in / Sign up

Export Citation Format

Share Document