scholarly journals The social cost of carbon dioxide under climate-economy feedbacks and temperature variability

2021 ◽  
Vol 16 (9) ◽  
pp. 094037
Author(s):  
Jarmo S Kikstra ◽  
Paul Waidelich ◽  
James Rising ◽  
Dmitry Yumashev ◽  
Chris Hope ◽  
...  
2020 ◽  
Author(s):  
Jarmo Kikstra ◽  
Paul Waidelich ◽  
James Rising ◽  
Dmitry Yumashev ◽  
Chris Hope ◽  
...  

<p>A key statistic describing climate change impacts is the “social cost of carbon” (SCC), the total market and non-market costs to society incurred by releasing a ton of CO<sub>2</sub>. Estimates of the SCC have risen in recent years, with improved understanding of the risk of climate change to various sectors, including agriculture [1], mortality [2], and economic growth [3].</p><p>The total risks of climate impacts also depend on the representation of human-climate feedbacks such as the effect of climate impacts on GDP growth and extremes (rather than a focus only on means), but this relationship has not been extensively studied [4-7]. In this paper, we update the widely used PAGE IAM to investigate how SCC distributions change with the inclusion of climate-economy feedbacks and temperature variability. The PAGE model has recently been improved with representations of permafrost thawing and surface albedo feedback, CMIP6 scenarios, and empirical market damage estimates [8]. We study how changes from PAGE09 to PAGE-ICE affected the SCC, increasing it up to 75%, with a SCC distribution with a mean around $300 for the central SSP2-4.5 scenario. Then we model the effects of different levels of the persistence of damages, for which the persistence parameter is shown to have enormous effects. Adding stochastic interannual regional temperature variations based on an analysis of observational temperature data [9] can increase the hazard rate of economic catastrophes changes the form of the distribution of SCC values. Both the effects of temperature variability and climate-economy feedbacks are region-dependent. Our results highlight the importance of feedbacks and extremes for the understanding of the expected value, distribution, and heterogeneity of climate impacts.</p><p> </p><p>[1] Moore, F. C., Baldos, U., Hertel, T., & Diaz, D. (2017). New science of climate change impacts on agriculture implies higher social cost of carbon. Nature communications, 8(1), 1607.</p><p>[2] Carleton, et al. (2018). Valuing the global mortality consequences of climate change accounting for adaptation costs and benefits.</p><p>[3] Ricke, K., Drouet, L., Caldeira, K., & Tavoni, M. (2018). Country-level social cost of carbon. Nature Climate Change, 8(10), 895.</p><p>[4] Burke, M., et al. (2016). Opportunities for advances in climate change economics. Science, 352(6283), 292–293. https://doi.org/10.1126/science.aad9634</p><p>[5] National Academies of Sciences Engineering and Medicine. (2017). Valuing climate damages: updating estimation of the social cost of carbon dioxide. National Academies Press.</p><p>[6] Stiglitz, J. E., et al.. (2017). Report of the high-level commission on carbon prices.</p><p>[7] Field, C. B., Barros, V., Stocker, T. F., & Dahe, Q. (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change (Vol. 9781107025). https://doi.org/10.1017/CBO9781139177245.009</p><p>[8] Yumashev, D., et al. (2019). Climate policy implications of nonlinear decline of Arctic land permafrost and other cryosphere elements. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-09863-x</p><p>[9] Brierley, C. M., Koch, A., Ilyas, M., Wennyk, N., & Kikstra, J. S. (2019, March 12). Half the world's population already experiences years 1.5°C warmer than preindustrial. https://doi.org/10.31223/osf.io/sbc3f</p>


Author(s):  
Jonathan Pycroft ◽  
Lucia Vergano ◽  
Chris Hope ◽  
Daniele Paci ◽  
Juan Carlos Ciscar

Author(s):  
Jonathan Pycroft ◽  
Lucia Vergano ◽  
Chris W. Hope ◽  
Daniele Paci ◽  
Juan Carlos Ciscar

Author(s):  
Christoph Hambel ◽  
Holger Kraft ◽  
Eduardo Schwartz

2017 ◽  
Vol 9 (5) ◽  
pp. 107
Author(s):  
Seied Mohsen Taghavi ◽  
Teodoro C. Mendoza ◽  
Bart Acero Jr ◽  
Tao Li ◽  
Sameer Ali Siddiq ◽  
...  

Breeding of rice varieties with low carbon dioxide equivalent (CO2e) emission is essential in reducing global greenhouse gas (GHG) emissions. In this study, we compared the gross CO2e emission of two newly developed green super rice (GSR) varieties with elite hybrids and nationally released farmer-cultivated varieties from production to post-production in the dry and wet seasons in Laguna, Philippines. The average gross CO2e emission was 17.9 tons CO2e ha-1 or 2.98 tons CO2e ton-1 rice (production 82%, post-production 18%). Contributing to this total were soil emissions at 72%, the use of chemicals at 5%, burning of rice straw at 3%, cooking at 12%, and transportation at 5%. The average social cost of carbon (SCC) per ton of rice was estimated at $119. Increasing grain yield per unit area with shorter growth duration decreased CO2e emission of rice per unit of weight. Cultivation of rice varieties GSR8 and GSR2 emitted 37.0% lower CO2e than the popular inbred varieties.


Sign in / Sign up

Export Citation Format

Share Document